

Three-phase monitoring relays CM-PVS

CM-PVS.31 and CM-PVS.41

The three-phase monitoring relays CM-PVS.x1 monitor the phase parameters phase sequence, phase failure as well as over- and undervoltage.

All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

Characteristics

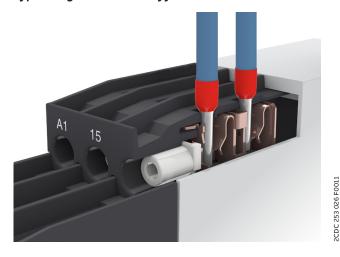
- Monitoring of three-phase mains for phase sequence (can be switched off), phase failure, over- and undervoltage
- Suitable for railway applications
- TRMS measuring principle
- Threshold values for over- and undervoltage are adjustable as absolute values
- Tripping delay T_{ν} can be adjusted or switched off by means of a logarithmic scale (0 s; 0.1-30 s)
- ON-delayed or OFF-delayed tripping delay selectable

- · Powered by the measuring circuit
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0 $\,$
- · Tool-free mounting on DIN rail as well as demounting
- 2 c/o (SPDT) contacts
- 22.5 mm (0.89 in) width
- 3 LEDs for the indication of operational states

Order data

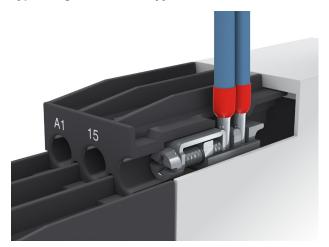
Three-phase monitoring relays

Туре	Rated control supply voltage = measuring voltage	Connection technology	Order code
CM-PVS.31P	3 x 160-300 V AC	Push-in terminals	1SVR740794R1300
CM-PVS.31S		Screw terminals	1SVR730794R1300
CM-PVS.41P	3 x 300-500 V AC	Push-in terminals	1SVR740794R3300
CM-PVS.41S		Screw terminals	1SVR730794R3300


Accessories

Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR430029R0100
MAR.01	Marker label for devices without DIP switches	1SVR366017R0100
COV.11	Sealable transparent cover	1SVR730005R0100

Connection technology


Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxS.yyP

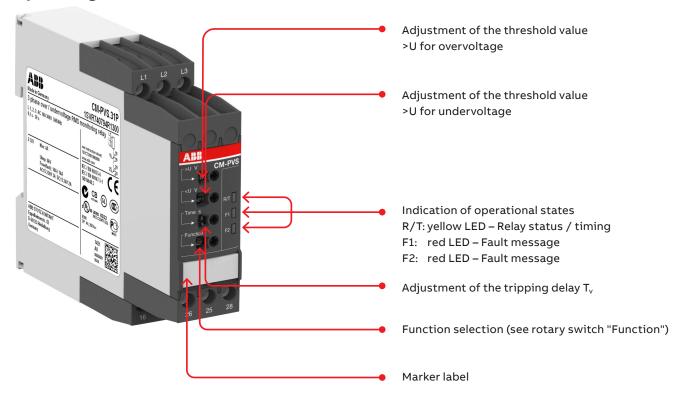
Approved screw connection technology with doublechamber cage connection terminals

Type designation CM-xxS.yyS

2CDC 253 025 F0011

Push-in terminals

- Tool-free connection of rigid and flexible wires with wire and ferrule
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- · No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight


Double-chamber cage connection terminals

- · Terminal spaces for different wire sizes
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

Application

The three-phase monitoring relays CM-PVS.x1 are designed for use in three-phase mains for monitoring the phase parameters phase sequence, phase failure as well as over- and undervoltage.

The CM-PVS.x1 provide an adjustable tripping delay and work according to the closed-circuit principle.

Operating mode

The CM-PVS.x1 have 2 c/o (SPDT) contacts and are available for 3-wire AC systems. The units are adjusted with front-face operating controls. The selection of ON-delay with phase sequence monitoring , OFF-delay with phase sequence monitoring , OFF-delay without phase sequence monitoring is made with a rotary switch.

Potentiometers, with direct reading scale, allow the adjustment of the threshold values for overvoltage (>U), undervoltage (<U) and the tripping delay T_v . The tripping delay T_v is adjustable over a range of instantaneous to a 30 s delay. Timing is displayed by a flashing yellow LED labelled R/T.

Adjustment potentiometer

Threshold values

By means of three separate potentiometers with direct reading scales, the threshold values for over- and undervoltage as well as for phase unbalance can be adjusted within the measuring range.

Туре	Measuring range for overvoltage	Measuring range for undervoltage
CM-PVS.31	3 x 220-300 V AC	3 x 160-230 V AC
CM-PVS.41	3 x 420-500 V AC	3 x 300-380 V AC

Tripping delay T_v

The tripping delay Tv can be adjusted within a range of 0.1 to 30 s by means of a potentiometer with logarithmic scale. By turning to the left stop, the tripping delay can be switched off.

Rotary switch

Type of tripping delay and phase sequence monitoring

The type of tripping delay and phase sequence monitoring can be selected via the rotary switch "Function".

ON-delay with phase sequence monitoring The output relays de-energize as soon as a phase sequence error occurs. The output relays re-energize automatically as soon as the phase sequence is correct again.
OFF-delay with phase sequence monitoring The output relays de-energize as soon as a phase sequence error occurs. The output relays re-energize automatically as soon as the phase sequence is correct again.
ON-delay without phase sequence monitoring Phase sequence errors will not cause a tripping of the relay.
OFF-delay without phase sequence monitoring Phase sequence errors will not cause a tripping of the relay.

Indication of operational states

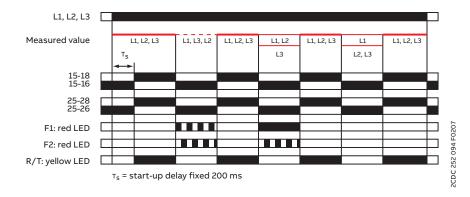
LEDs, status information and fault messages

Operational state	R/T: LED yellow	F1: LED red	F2: LED red
Control supply voltage applied, output relay energized		-	-
Tripping delay T _v active	п.г.	-	-
Phase failure	-		пл
Phase sequence	-	□□□ alternating	
Overvoltage	-	Г .	-
Undervoltage	-	-	Г .
Adjustment error 1)		п.т.	

¹⁾ Overlapping of the threshold values: The threshold value for overvoltage is set to a smaller value than the threshold value for undervoltage.

Function descriptions / diagrams

Phase sequence and phase failure monitoring

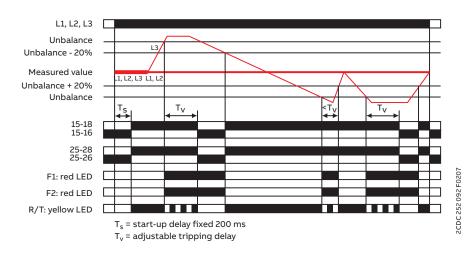

Applying control supply voltage begins the fixed start-up delay T_s . When T_s is complete and all phases are present with correct voltage, the output relays energize and the yellow LED R/T is on.

Phase sequence monitoring

The output relays de-energize as soon as a phase sequence error occurs. The fault is displayed by alternated flashing of the LEDs F1 and F2. The output relays re-energize automatically as soon as the phase sequence is correct again.

Phase failure monitoring

The output relays de-energize instantaneously if a phase failure occurs. The fault is indicated by lightning of LED F1 and flashing of LED F2. The output relays re-energize automatically as soon as the voltage returns to the tolerance range.


Phase unbalance monitoring

Applying control supply voltage begins the fixed start-up delay T_s . When T_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T is on.

Type of tripping delay = ON-delay ⊠

If the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize after the set tripping delay T_v is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.

The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 20 %. The LED R/T is on.

Electrical connection

L1	L2	L3
L1L2 L C] 	25 26 28
26	25	28
16	15	18

L1, L2, L3 Control supply voltage = measuring voltage
15-16/18 Output contacts - closed-circuit principle
25-26/28

Connection diagram CM-PVS.x1

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuit

Туре	CM-PVS.31	CM-PVS.41		
Supply circuit = measuring circuit	L1, L2, L3	L1, L2, L3		
Rated control supply voltage U _s = measuring voltage	3 x 160-300 V AC	3 x 300-500 V AC		
Rated control supply voltage U _s tolerance	-15+10 %	-15+10 %		
Rated frequency	50/60 Hz	50/60 Hz		
Frequency range	45-65 Hz			
Typical current / power consumption	25 mA / 10 VA (230 V AC)	25 mA / 18 VA (400 V AC)		

Measuring circuit		L1, L2, L3		
Monitoring functions		Phase failure	e =	
	Phase sequence Phase unbalance			
Measuring range		Overvoltage	3 x 220-300 V AC	3 x 420-500 V AC
		Undervoltage	3 x 160-230 V AC	3 x 300-380 V AC
Thresholds		Overvoltage	adjustable within the measuring range	
		Undervoltage	adjustable within the measuring range	
Tolerance of the adjusted threshold value		6% of full-scale value		
Hysteresis related to the threshold value Over-/undervoltage		fixed 5 %		
Rated frequency of the mea	asuring signal		50/60 Hz	
Frequency range of the me	asuring signal		45-65 Hz	
Maximum measuring cycle time		100 ms		
Accuracy within the rated control supply voltage tolerance		ΔU ≤ 0.5 %		
Accuracy within the temperature range		ΔU ≤ 0.06 % / °C		
Measuring method		True RMS		

Timing circuit	
Start-up delay T _s	fixed 200 ms
Tripping delay T _v	ON- or OFF-delay 0 s; 0.1-30 s adjustable
Repeat accuracy (constant parameters)	< ±0.2 %
Setting accuracy of time delay	±6 % of full-scale value
Accuracy within the rated control supply voltage tolerance	$\Delta t \leq 0.5 \%$
Accuracy within the temperature range	$\Delta t \leq 0.06 \% / ^{\circ}C$

User interface

Indication of operational states		
Relay status / timing	R/T	yellow LED
Fault message	F1	red LED
Fault message	F2	red LED

Details see table , LEDs, status information and fault messages' on page 4 and , Function descriptions / diagrams' on page 5.

Output circuits

Kind of output	15-16/18 25-26/28	relay, 1st c/o (SPDT) contact relay, 2nd c/o (SPDT) contact 1 x 2 (SPDT) contacts	
Operating principle		closed-circuit principle 1)	
Contact material		AgNi alloy, Cd free	
Rated operational voltage Ue	2	250 V	
Minimum switching voltage	/ Minimum switching current	24 V / 10 mA	
Maximum switching voltage	/ Maximum switching current	see load limit curves	
Rated operational current le	AC-12 (resistive) at 230 V	4 A	
	AC-15 (inductive) at 230 V	3 A	
	DC-12 (resistive) at 24 V	4 A	
	DC-13 (inductive) at 24 V	2 A	
AC rating (UL 508)	Utilization category (Control Circuit Rating Code)	В 300	
_	max. rated operational voltage	300 V AC	
_	max. continuous thermal current at B 300	5 A	
	max. making/breaking apparent power at B 300	3600/360 VA	
Mechanical lifetime		30 x 10 ⁶ switching cycles	
Electrical lifetime	AC-12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles	
Maximum fuse rating to achi	eve n/c contact	6 A fast-acting	
short-circuit protection	n/o contact	10 A fast-acting	

_

General data

MTBF			on request		
Duty time		100 %			
Dimensions			see 'Dimensional drawings'		
Weight			Screw connection technology	Easy Connect Technology (push-in)	
	net weight	CM-PVS.31	0.141 kg (0.311 lb)	0.132 kg (0.291 lb)	
		CM-PVS.41	0.139 kg (0.306 lb)	0.131 kg (0.289 lb)	
	gross weight	CM-PVS.31	0.166 kg (0.366 lb)	0.157 kg (0.346 lb)	
		CM-PVS.41	0.164 kg (0.362 lb)	0.156 kg (0.343 lb)	
Mounting			DIN rail (IEC/EN 60715), snap-on mounting without any tool		
Mounting position			any		
Minimum distance to	other units		CM-PVS.31	CM-PVS.41	
		horizontal	10 mm (0.39 in) in case of continuous voltage of		
		> 220 V	> 400 V		
Material of housing		UL 94 V-0			
		g IP50			
		IP20			

 $^{{}^{1)}} Closed\text{-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value.} \\$

Electrical connection

		Screw connection technology	Easy Connect Technology (push-in)
Connnecting capacity	fine-strand with(out) wire end ferrule		2 x 0.5-1.5 mm ² (2 x 18-16 AWG)
	rigid	1 x 0.5-4 mm ² (1 x 20-12 AWG) 2 x 0.5-2.5 mm ² (2 x 20-14 AWG)	2 x 0.5-1.5 mm ² (2 x 20-16 AWG)
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm (7.08 lb.in)	-

Environmental data

Ambient temperature ranges	operation	-25+60 °C
	storage	-40+85 °C
Damp heat, cyclic (IEC/EN 60068-2-30)		6 x 24 cycle, 55 °C, 95 % RH
Climatic class		3K3
Vibration, sinusoidal		Class 2
Shock		Class 2

Isolation data

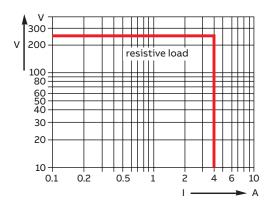
Туре		
Rated insulation voltage U _i	input circuit / output circuit	600 V
	output circuit 1 / output circuit 2	300 V
Rated impulse withstand	input circuit / output circuit	6 kV, 1.2/50 μs
voltage U _{imp}	output circuit 1 / output circuit 2	4 kV, 1.2/50 μs
Basic insulation	input circuit / output circuit	600 V
Protective separation (IEC/EN 61140, EN 50178)	input circuit / output circuit	-
Pollution degree		3
Overvoltage category		III

Standards / Directives

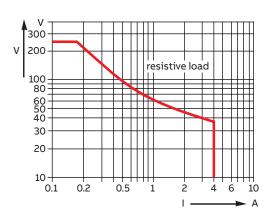
Standards	IEC/EN 60947-5-1, IEC/EN 60255-27, EN 50178
Low Voltage Directive	2014/35/EU
EMC directive	2014/30/EU
RoHS directive	2011/65/EU

Railway application standards

EN 50455 JEQ 60574		70
EN 50155, IEC 60571 "Railway applications – Electronic equipment used on rolling stock"	temperature class	T3
	supply voltage category	S1, S2, C1*), C2*)
IEC/EN 61373 "Railway applications – Rolling stock equipment – Shock and vibration tests"		Category 1, Class B
EN 45545-2 Railway applications – Fire		HL3
protection on railway vehicles – part 2: Requirements for fire behavior of materials and components	ISO 4589-2	LOI 32.3 %
	NF X-70-100-1	C.I.T. (T12) 0.45
	EN ISO 5659-2	Ds max (T10.03) 104
NF F 16-101: Rolling stock. Fire behaviour. Materials choosing NF F 16-102: Railway rolling stock. Fire behaviour. Materials choosing, application for electric equipment		12 / F2
DIN 5510-2 Preventive fire protection in railway vehicles. Part 2: Fire behaviour and fire side effects of materials and parts		fullfilled

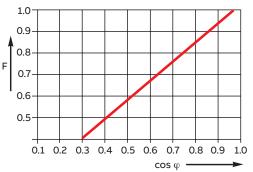

^{*)} only applicable for devices with DC supply

Electromagnetic compatibility

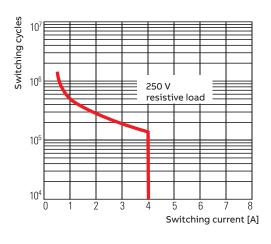

Interference immunity to	<u> </u>	IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level 3 (6 kV / 8 kV)
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3 (10 V/m)
electrical fast transient / burst	IEC/EN 61000-4-4	Level 3 (2 kV / 2 kHz)
surge	IEC/EN 61000-4-5	Level 4 (2 kV L-L)
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3 (10 V)
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

Technical diagrams

Load limit curves



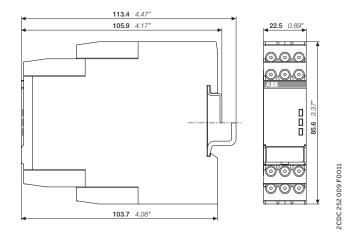
10000



AC load (resistive)

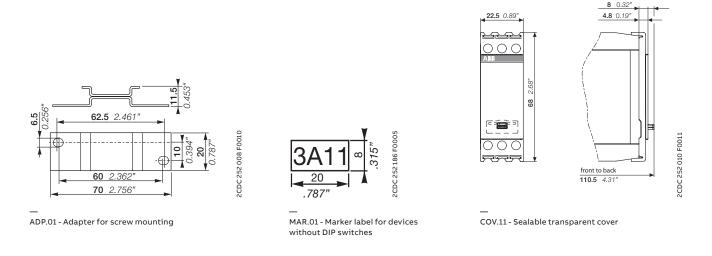
DC load (resistive)

2CDC 252 192 F0205



Derating factor F for inductive AC load

Contact lifetime


Dimensions

in mm and inches

Accessories

in mm and inches

Further documentation

Document title	Document type	Document number
Electronic relays and controls	Catalog	2CDC 110 004 C02xx
CM-PAS, CM-PFS, CM-PSS, CM-PVS	Instruction manual	1SVC 730 510 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage $\,$

-> Automation, control and protection -> Electronic relays and controls -> Measuring and monitoring relays.

CAD system files

 $You \ can \ find \ the \ CAD \ files \ for \ CAD \ systems \ at \ http://abb-control-products.partcommunity.com$

-> Low Voltage Products & Systems -> Control Products -> Electronic Relays and Controls.

