EcoStruxure Cobot Expert

Software Guide

Original instructions

Legal Information

The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a non-exclusive and personal license to consult it on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof.

Table of Contents

Safety Information	7
About the Book	8
Hazard Information	13
Proper Use	13
Qualification of Personnel	14
Before You Begin	15
Start-Up and Test	16
Operation and Adjustments	17
Cybersecurity in EcoStruxure Cobot Expert	18
Getting Started	20
General Information on EcoStruxure Cobot Expert	20
System Requirements	21
Installing EcoStruxure Cobot Expert on Android	22
Installing EcoStruxure Cobot Expert on Windows	23
WiFi Service Webserver Connection	26
Reset to Factory Settings	28
Uninstalling EcoStruxure Cobot Expert	31
Operator Risk Estimation and Reduction	
EcoStruxure Cobot Expert Basics	33
User Interface	33
Software Settings	37
Connecting the Lexium Cobot	
Starting Up the Lexium Cobot System	
Shutting Down the Lexium Cobot System	
Delegating the Control of the Lexium Cobot	
Switching between a Physical Lexium Cobot and a Simulation	
J	I
Displaying the Log Information	
Displaying the Log Information	55
Checksum for Safety-Related Parameters	55 57
Checksum for Safety-Related Parameters Displaying the Monitoring Information	55 57
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually	55 57 59
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface	
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types	55 59 60 60
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings	55 57 59 60 60 64
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting	
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings	55 57 59 60 60 64 67
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types. Settings System Setting Initial Settings Network Settings	55 57 59 60 60 64 67 67
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade	55 57 59 60 60 64 67 67 67
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup	55 57 59 60 60 64 67 67 68 68
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management	55 57 59 60 60 64 67 67 68 69
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types. Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Setting	55 57 59 60 60 64 67 67 68 68 71
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Setting TCP Settings	55 57 59 60 60 64 67 67 68 69 71 74
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types. Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Settings TCP Settings Load Setting Load Setting	55 57 59 60 60 64 67 67 68 68 69 71 74 76
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Setting TCP Settings Load Setting User Coordinate System	55 57 59 60 60 64 67 67 68 69 71 74 76 83
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Settings TCP Settings Load Setting User Coordinate System Installation Settings	55 57 59 60 60 64 67 67 68 69 71 74 76 76
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types. Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Settings TCP Settings Load Setting User Coordinate System Installation Settings Error Diagnosis	55 57 59 60 60 64 67 67 67 71 74 76 76 83 91
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Setting TCP Settings Load Setting User Coordinate System Installation Settings Error Diagnosis Safety Setting.	55 57 59 60 60 64 67 67 68 69 71 74 76 83 91
Checksum for Safety-Related Parameters Displaying the Monitoring Information Operating the Lexium Cobot Manually Manual Operation Interface Lexium Cobot Motion Types. Settings System Setting Initial Settings Network Settings Version Upgrade System Backup User Management Operation Settings TCP Settings Load Setting User Coordinate System Installation Settings Error Diagnosis	55 57 59 60 60 64 67 67 67 71 74 76 76 83 91

Collision Protection	104
Reduced Mode	108
Hand-Guided Mode	109
Security Zone	110
Tool Direction	114
Special Safety IO	116
Program Setting	119
Default Program	119
Trajectory Record	122
System Variable	
Hardware and Communication	
Modbus Parameter Setting	
End Sensor	
Profinet Settings	
EtherNet/IP Settings	
Auxiliary Hardware Settings	
Terminal IO	
Braking Voltage	
I/O Panel	
Function Settings	
Cabinet Tab	
Tool End Tab	
Modbus Tab	
Profinet	
EtherNet/IP	
Adding Extended I/O	
Blockly Programming	
Programming Control Interface	
Types of Instructions	
Script Editing via Subprogram	
Grammar of Lexium Cobot Programming Script	
Data Types	
Scalar	
String	
Array	
System Variable	
Expressions	
Arithmetic Operations	
Logical and Relational Operators	
Bitwise Operators	
Statements	
Simple Statement	
Conditional Statement	
Loop Statement	
Jump Statement	
Motion-Related Commands	
movl()	
movj()	198
movc()	199
get_atl_joint_pose()	200
get_atl_TCP_pose()	200

	get_ati_flange_pose()	.201
	enable_speed_override()	201
	disable_speed_override()	202
	Control	
	set_digital_output()	203
	set_analog_output()	203
	get_digital_output()	204
	get_analog_output()	205
	get_digital_input()	205
	get_analog_input()	206
	wait_input()	206
	get_timeout()	207
Para	ameter Setting	208
	set_payload()	208
	get_payload()	208
	get_collision_level()	
	set tool()	
	set_tool_id()	
	get tool offsets()	
	get tool offsets of()	
	set_user_frame()	
	set_user_frame_id()	
	get_user_frame()	
	get_user_frame_of()get_user_frame_of()	
	e Calculation	
	pose_add()	
	· — "	
	pose_sub()	
	pose_dist()	
	kine_inverse()	
	kine_forward()	
	illiary Function Library	
	ng Operations	
	string_concat()	
	get_string_from_array()	
	get_array_from_string()	217
	get_length()	
	strcmp()	218
Pro	gram Control and Debugging	219
	log_message()	219
	get_system_clock()	219
	sleep()	219
	pause()	220
	exit()	220
Net	work Communication	221
	socket_open()	221
	socket_close()	221
	socket_get_var()	
	socket_read_real()	
	socket_read_string()	
	socket_send()	
	socket_recv()	
	— ·	

Appendices	224
Additional Information on the Lexium Cobot	225
Data Types of Lexium Cobot Parameters	225
Modbus Address Table	227
Profinet Address Table	233
EtherNet/IP I/O Address Table	237
Further Information About the Manufacturer	241
Contact Addresses	241
Product Training Courses	241
Glossary	243

Safety Information

Important Information

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

About the Book

Document Scope

This document describes the functionalities contained in EcoStruxure Cobot Expert.

Validity Note

This document has been created for the release of EcoStruxure Cobot Expert version 1.7.

Related Documents

Document title	Reference
Lexium Cobot, Hardware Guide	EIO0000004783 (EN)
EcoStruxure Cobot Expert, LexiumCobotCommunication, Library Guide	EIO0000005112 (EN)
Schneider Electric Cybersecurity Support Portal	www.se.com/en/work/support/cybersecurity/ overview.jsp
Cybersecurity Guidelines for EcoStruxure Machine Expert, Modicon and PacDrive Controllers and Associated Equipment, User Guide	EIO0000004242 (EN)
Cybersecurity Best Practices	CS-Best-Practices-2019-340 (EN)

To find documents online, visit the Schneider Electric download center (www.se.com/ww/en/download/).

Product Related Information

AWARNING

LOSS OF CONTROL

- Perform a Failure Mode and Effects Analysis (FMEA), or equivalent risk analysis, of your application, and apply preventive and detective controls before implementation.
- Provide a fallback state for undesired control events or sequences.
- Provide separate or redundant control paths wherever required.
- Supply appropriate parameters, particularly for limits.
- Review the implications of transmission delays and take actions to mitigate them
- Review the implications of communication link interruptions and take actions to mitigate them.
- Provide independent paths for control functions (for example, emergency stop, over-limit conditions, and error conditions) according to your risk assessment, and applicable codes and regulations.
- Apply local accident prevention and safety regulations and guidelines.¹
- Test each implementation of a system for proper operation before placing it into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems or their equivalent governing your particular location.

▲WARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Schneider Electric for use with this equipment.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

AWARNING

UNINTENDED EQUIPMENT OPERATION

Update your application program as required, paying particular attention to I/O address adjustments, whenever you modify the hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Incomplete file transfers, such as data files, application files and/or firmware files, may have serious consequences for your machine or controller. If you remove power, or if there is a power outage or communication interruption during a file transfer, your machine may become inoperative, or your application may attempt to operate on a corrupted data file. If an interruption occurs, reattempt the transfer. Be sure to include in your risk analysis the impact of corrupted data files.

▲ WARNING

UNINTENDED EQUIPMENT OPERATION, DATA LOSS, OR FILE CORRUPTION

- Do not interrupt an ongoing data transfer.
- If the transfer is interrupted for any reason, re-initiate the transfer.
- Do not place your machine into service until the file transfer has completed successfully, unless you have accounted for corrupted files in your risk analysis and have taken appropriate steps to prevent any potentially serious consequences due to unsuccessful file transfers.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

AWARNING

UNINTENDED MOVEMENT OF THE LEXIUM COBOT ARM

- Ensure the proper functioning of the functional safety equipment before commissioning.
- Ensure that you can stop Lexium Cobot Arm movements at any time using functional safety equipment (limit switch, emergency stop) before and during commissioning.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The Lexium Cobot systems are calibrated before delivery. Under certain conditions, the correspondence between the hardware position and its representation in the software may be lost during the life cycle of the products, for example by moving the Lexium Cobot Arm without drive energy or by overtwisting the joints. In such a case, the verification of the mechanical position in relation to the software representation is required.

If you have any doubts about the correspondence between the position of the hardware and its representation in the software, contact your local Schneider Electric service representative.

AWARNING

INCORRECT REFERENCE TO MECHANICAL SYSTEM

- Ensure that a valid mechanical position reference exists by performing commissioning tests for all operating modes.
- Verify the mechanical position reference before operating the Lexium Cobot if the Lexium Cobot Arm has been moved without drive energy or if at least one joint may have been overtwisted, as described in the Lexium Cobot Hardware Guide.
- Verify that the mechanical positions of the joints correspond to the representation in the software.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

For further information, refer to the Lexium Cobot Hardware Guide, chapter *Verification of Mechanical Position*.

Information on Non-Inclusive or Insensitive Terminology

As a responsible, inclusive company, Schneider Electric is constantly updating its communications and products that contain non-inclusive or insensitive terminology. However, despite these efforts, our content may still contain terms that are deemed inappropriate by some customers.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard	Description
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.
ISO 13849-1:2015	Safety of machinery: Safety related parts of control systems.
	General principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment.
	Part 1: General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design
IEC 62061:2015	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Software requirements.
IEC 61784-3:2016	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.
EN ISO 10218-1:2011	Robots and robotic devices- Safety requirements for industrial robots - Part 1: Robots
EN ISO 10218-2:2011	Robots and robotic devices- Safety requirements for industrial robots - Part 2: Robot systems and integration
ISO/TS 15066:2016-02	Robots and robotic devices - Collaborative robots
2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive
2014/53/EU	Radio Emission Directive
IEC 62443	Industrial communication networks - Network and system security

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Figures

Unless otherwise specified, the various references of the Lexium Cobot Arm are represented in the figures as LXMRL03S0•••.

Hazard Information

What's in This Chapter

Proper Use	
Qualification of Personnel	14
Before You Begin	15
Start-Up and Test	
Operation and Adjustments	
Cybersecurity in ÉcoStruxure Cobot Expert	

Proper Use

This product is a software to be used together with the Lexium Cobot system intended solely for the purposes as described in the present documentation as applied in the industrial environment for the civilian end-use case.

Always observe the applicable safety-related instructions, the specified conditions, and the technical data.

Perform a risk assessment concerning the specific use before using the product. Take protective measures according to the result.

Since the product is used as a part of an overall system, you must ensure the safety of the personnel by means of the design of this overall system (for example, machine design).

Any other use is not intended and may be hazardous.

Qualification of Personnel

Target Audience for This Manual

This documentation is intended for users having the following knowledge:

- Skills and knowledge related to the construction and operation of electrical equipment and the installation
- · Knowledge and experience in industrial control programming
- · Received safety-related training to recognize and avoid the hazards involved

Qualified Person

Aside from skills and knowledge, qualified personnel must be able to detect possible hazards that may arise from parametrization, changing parameter values and generally from mechanical, electrical, or electronic equipment. The qualified personnel must be familiar with the standards, provisions, and regulations for the prevention of industrial accidents, which they must observe when working on the Lexium Cobot system.

Before You Begin

Do not use this product on machinery lacking effective point-of-operation guarding. Lack of effective point-of-operation guarding on a machine can result in serious injury to the operator of that machine.

▲ WARNING

UNGUARDED EQUIPMENT

- Do not use this software and related automation equipment on equipment which does not have point-of-operation protection.
- Do not reach into machinery during operation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

This automation equipment and related software is used to control a variety of industrial processes. The type or model of automation equipment suitable for each application will vary depending on factors such as the control function required, degree of protection required, production methods, unusual conditions, government regulations, etc. In some applications, more than one processor may be required, as when backup redundancy is needed.

Only you, the user, machine builder or system integrator can be aware of all the conditions and factors present during setup, operation, and maintenance of the machine and, therefore, can determine the automation equipment and the related safeties and interlocks which can be properly used. When selecting automation and control equipment and related software for a particular application, you should refer to the applicable local and national standards and regulations. The National Safety Council's Accident Prevention Manual (nationally recognized in the United States of America) also provides much useful information.

In some applications, such as packaging machinery, additional operator protection such as point-of-operation guarding must be provided. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas and serious injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safeties and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safeties related to point-of-operation protection must be coordinated with the related automation equipment and software programming.

NOTE: Coordination of safeties and mechanical/electrical interlocks for pointof-operation protection is outside the scope of the Function Block Library, System User Guide, or other implementation referenced in this documentation.

Start-Up and Test

Before using electrical control and collaborative robotic equipment for regular operation after installation, the Lexium Cobot system must be given a start-up test by qualified personnel to verify correct operation of the equipment. It is important that arrangements for such a check are made and that enough time is allowed to perform complete and satisfactory testing.

AWARNING

EQUIPMENT OPERATION HAZARD

- Verify that all installation and set up procedures have been completed.
- Before operational tests are performed, remove all blocks or other temporary holding means used for shipment from all component devices.
- Remove tools, meters, and debris from equipment.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all equipment documentation for future references.

NOTE: Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and temporary grounds that are not installed according to local regulations (according to the National Electrical Code in the U.S.A, for instance). If high-potential voltage testing is necessary, follow recommendations in equipment documentation to prevent accidental equipment damage.

Before energizing equipment:

- · Remove tools, meters, and debris from equipment.
- Perform all start-up tests.

Operation and Adjustments

The following precautions are from the NEMA Standards Publication ICS 7.1-1995 (English version prevails):

- Regardless of the care exercised in the design and manufacture of equipment or in the selection and ratings of components, there are hazards that can be encountered if such equipment is improperly operated.
- It is sometimes possible to misadjust the equipment and thus produce unsatisfactory or unsafe operation. Always use the manufacturer's instructions as a guide for functional adjustments. Personnel who have access to these adjustments should be familiar with the equipment manufacturer's instructions and the machinery used with the electrical equipment.
- Only those operational adjustments actually required by the operator should be accessible to the operator. Access to other controls should be restricted to prevent unauthorized changes in operating characteristics.

Cybersecurity in EcoStruxure Cobot Expert

Our Position on Cybersecurity

Products and solutions of Schneider Electric are being used in a wide range of infrastructures as well as in manufacturing plants. The demands of cloud computing, the Internet of Things (IoT), and increasing threats against critical infrastructure have elevated cybersecurity as a priority. For Schneider Electric, cybersecurity and data privacy encompasses the measures, actions, and practices employed to help protect digital offerings and solutions from cyber threats.

Schneider Electric provides a document that gives guidelines on how to help improve the cybersecurity posture of customer systems.

If you have a cybersecurity question or issue, contact your local Schneider Electric service representative.

EcoStruxure

EcoStruxure is the open, interoperable, IoT-enabled system architecture and platform of Schneider Electric. EcoStruxure leverages advancements in IoT, mobility, sensing, cloud, analytics, and cybersecurity to deliver innovation at every level. This includes connected products and edge control as well as apps, analytics and services.

Cybersecurity Key Aspects

The cybersecurity position of Schneider Electric focuses on key apects:

- Protecting strategic IT systems, assets, and internal activities
- Leading the digital transformation of energy management and automation
- Designing and developing new solutions and products within a cybersecurity framework

Best Practices for Reinforcing Cybersecurity of Lexium Cobot

To operate the Lexium Cobot, follow these industry cybersecurity best practices:

- Locate the Lexium Cobot behind a firewall and isolate it from the business network.
- Install physical controls so that only authorized personnel can access the zone where the Lexium Cobot is located.
- Change the default passwords used for the WiFi Service Access Point, the WiFi Service Webserver and the Lexium Cobot on first use to help ensure that only authorized users can gain access.

NOTE: This is enforced at the first connection or after a firmware update for each component.

- Minimize network exposure and ensure that the Lexium Cobot is not accessible from the Internet.
- The Lexium Cobot supports Industrial Protocols such as Modbus TCP, Ethernet/IP and Profinet which do not support user authentication. So, enable only the protocols which are required for the application and implement a firewall to block unauthorized access.
- When remote access is required, use secured methods, such as Virtual Private Networks (VPNs).

 The Lexium Cobot follow the principles of Least Privilege by providing user levels with different level of permissions. For further information, refer to Connecting the Lexium Cobot, page 39.

Getting Started

What's in This Chapter

General Information on EcoStruxure Cobot Expert	
System Requirements	21
Installing EcoStruxure Cobot Expert on Android	22
Installing EcoStruxure Cobot Expert on Windows	23
WiFi Service Webserver Connection	26
Reset to Factory Settings	28
Uninstalling EcoStruxure Cobot Expert	
Operator Risk Estimation and Reduction	

General Information on EcoStruxure Cobot Expert

Overview

EcoStruxure Cobot Expert is the graphical control software for operating the Lexium Cobot (**co**llaborative ro**bot**). The software provides integrated functions for manual operation, program implementation, parameter configuration and information monitoring of the Lexium Cobot. EcoStruxure Cobot Expert offers an alternative to cumbersome robot handheld programming devices and integrates the same functionality into software that can be installed on Android mobile devices or Windows PCs.

Software Functions

EcoStruxure Cobot Expert provides the following functions:

- Configuration of system, operation, safety functions, hardware and communication parameters of the Lexium Cobot system
- · Manual operation of the Lexium Cobot Arm
- · Editing and setting of I/O configuration of the Lexium Cobot system
- · Programming the Lexium Cobot system
- · Displaying of general information of the Lexium Cobot system

System Requirements

The following table presents the minimum requirements of the device for using EcoStruxure Cobot Expert.

NOTE: EcoStruxure Cobot Expert is intended to be used either on Android or Windows devices.

Terminal type	Android device	Windows device
Operating System	Android 8.0	Windows 10 64 bit
Processor	Kirin 659 or Snapdragon 660	Intel Core i3
Storage capacity	32 GB	32 GB
System memory	4 GB	4 GB
Screen size / graphics	8.0 inches	Intel HD Graphics 4000
Network	WiFi standard: 802.11 b/g/n	WiFi standard 802.11 b/g/n or cable bound network card

Refer to *WiFi Connection Considerations* in the Lexium Cobot Hardware Guide, for more information concerning the use of a wireless connection.

Installing EcoStruxure Cobot Expert on Android

Overview

Since EcoStruxure Cobot Expert is included as an .apk file in the Lexium Cobot software package that you can download directly from the Schneider Electric website to your device and cannot be obtained from the Google Play Store, the software is identified on the Android system as software from an unknown source.

To install EcoStruxure Cobot Expert on your Android device, you must first enable applications from unknown sources to be installed on your device. Then you can install EcoStruxure Cobot Expert. See the procedures hereafter.

Prerequisites

Verify that your system meets the minimum system requirements, page 21, to install and run EcoStruxure Cobot Expert.

Allowing to Install Unknown Source Apps on Android

Step	Action
1	On your Android device, go to Settings > Application > Special app access > Install unknown apps or Settings > Security and privacy > Install unknown apps.
	NOTE: The procedure may differ from device to device or between different Android versions. If the following procedure does not apply to your device, refer to the documentation of your device.
2	Select your file explorer app from the list.
3	Select Allow app installs.

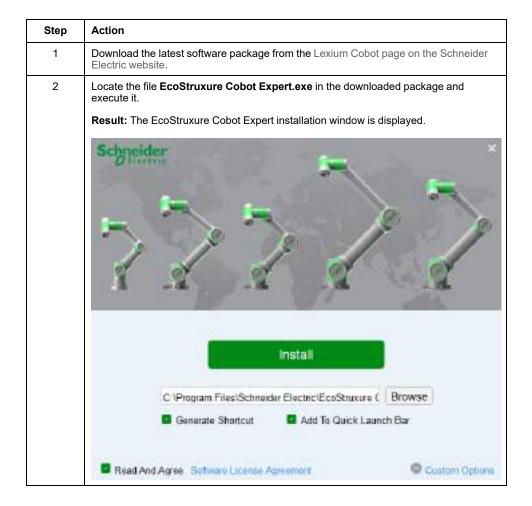
Installing EcoStruxure Cobot Expert on Android

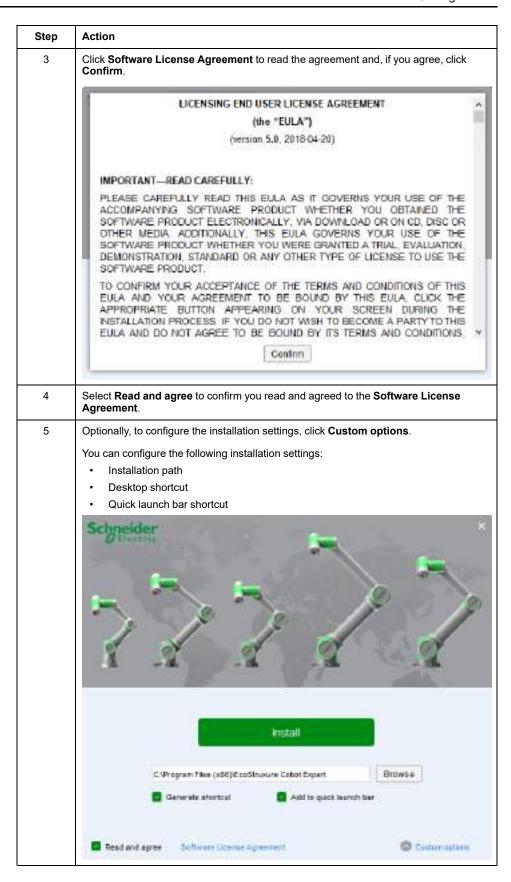
Step	Action
1	Download the latest software package from the Lexium Cobot page on the Schneider Electric website.
2	Locate the .apk file in the downloaded package in your file explorer app and tap it.
	Result: The installation confirmation prompt is displayed.
3	Select INSTALL.
	Result: EcoStruxure Cobot Expert is installed on your Android device. When the installation is complete a confirmation prompt is displayed.

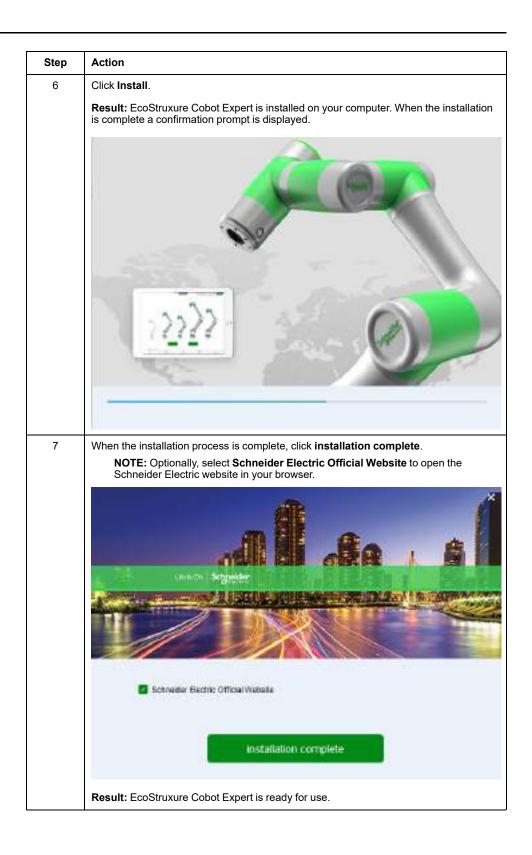
Installing EcoStruxure Cobot Expert on Windows

Prerequisites

- Verify that your system meets the minimum system requirements, page 21 to install and run EcoStruxure Cobot Expert.
- To install EcoStruxure Cobot Expert, you must have administrator privileges on the device.


NOTE: EcoStruxure Cobot Expert is installed for the other users of the device.


Default Directories


The default destination directory of the EcoStruxure Cobot Expert software installation is:

C:\Program Files\Schneider Electric\EcoStruxure Cobot Expert\V<Version Number>

Installing EcoStruxure Cobot Expert on Windows

WiFi Service Webserver Connection

Overview

The Lexium Cobot system provides an embedded WiFi service. The webserver is password protected. Each Lexium Cobot Controller has a unique password, which can be found on the WiFi access label attached at the inner side of the front door of the Lexium Cobot Cabinet Controller or on the back of the Lexium Cobot Compact Controller.

Refer to *WiFi Connection Considerations* in the *Lexium Cobot Hardware Guide*, for more information concerning the use of a wireless connection.

WiFi Access Data

The following figure represents the WiFi access label:

Password: The password is required to get access to the webserver. The password on the label is unique to the device.

WiFi SSID: The SSID of the WiFi is a unique 15-digit serial number, which corresponds to the serial number on the type plate. The WiFi SSID is linked to the serial number of the device and cannot be modified.

WiFi (**WPA2**): The WiFi connection is based on WPA2 standard. The WPA2 password on the label is unique to the device.

First Connection to the WiFi Service

When you connect for the first time or after a reset to factory settings, you need to change the passwords to use the WiFi (WPA2). For guidance on creating strong passwords, refer to Creating Strong Passwords, page 26.

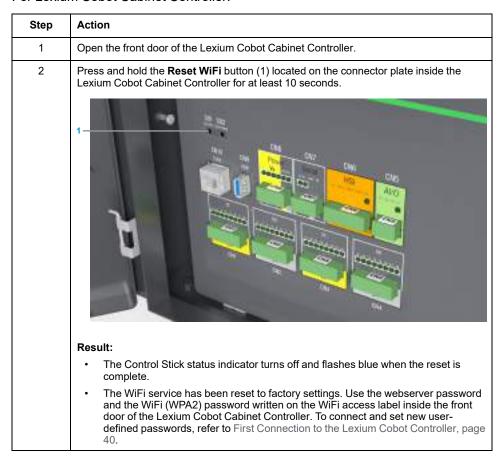
NOTE: Changing these passwords is mandatory to log into the Lexium Cobot Controller.

Creating Strong Passwords

Creating strong passwords helps protect devices and equipment from unauthorized access. Passwords should be unique. The same password should never be used for duplicated purposes and the same passwords should not be used on different devices.

Acceptance criteria for entering new passwords on the Lexium Cobot Arm system is a length of 8...20 characters. Create a password that contains at least one character from each of the following categories:

Uppercase letter (A, B, C... X, Y, Z)

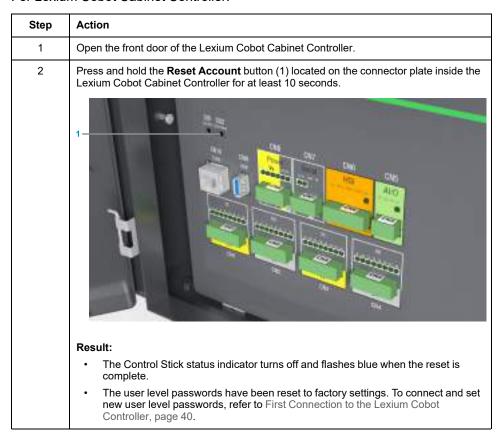

- Lowercase letter (a, b, c...x, y, z)
- Number (0..9)
- Special character (for example, "?", "#", "!")

Reset to Factory Settings

Reset WiFi Service to Factory Settings

If the webserver password and/or the WiFi (WPA2) password have been forgotten, the WiFi service can be reset to the factory settings using a hardware reset button on the Lexium Cobot Controllers. To reset the WiFi service to the factory settings, perform the following steps:

For Lexium Cobot Cabinet Controller:


For Lexium Cobot Compact Controller:

Step	Action	
1	Press and hold the Reset WiFi button (1) located on the antenna side of the Lexium Cobot Compact Controller for at least 10 seconds.	
	Result:	
	 The Control Stick status indicator turns yellow and flashes blue again when the reset is complete. 	
	The WiFi service is reset to factory settings. Use the webserver password and the WiFi (WPA2) password written on the WiFi access label on the back of the Lexium Cobot Compact Controller. To connect and set new user-defined passwords, refer to First Connection to the Lexium Cobot Controller, page 40.	

Reset Account to Factory Settings

If the passwords for the user levels have been forgotten, the account setting can be reset to the factory settings using a hardware reset button on the Lexium Cobot Controllers. To reset the user level passwords to the factory settings, perform the following steps:

For Lexium Cobot Cabinet Controller:

For Lexium Cobot Compact Controller:

Step	Action	
1	Press and hold the Reset Account button (1) located on the power connection side of the Lexium Cobot Compact Controller for at least 10 seconds.	
	ENST CHARLE (SEED) PROMIT FROM A PROMIT FACE	
	Result:	
	The Control Stick status indicator turns yellow and flashes blue again when the reset is complete.	
	The user level passwords are reset to factory settings. To connect and set new user level passwords, refer to First Connection to the Lexium Cobot Controller, page 40.	

Uninstalling EcoStruxure Cobot Expert

Uninstalling EcoStruxure Cobot Expert on Android

Step	Action
1	Tap and hold on the EcoStruxure Cobot Expert icon located in the app drawer or on the Home screen.
2	Depending on the device, tap Uninstall or drag the app to the Uninstall section that appears on the screen.
3	In the confirmation prompt, tap OK .
	Result: EcoStruxure Cobot Expert is uninstalled from your Android device.

Uninstalling EcoStruxure Cobot Expert on Windows

Step	Action
1	Close EcoStruxure Cobot Expert if it is opened:
	In the top menu, click More > Sign out.
2	Click the Windows Start button or press the Windows key.
3	In the Start menu select Settings .
4	In the Settings window select Applications and then Applications and features .
5	Select EcoStruxure Cobot Expert from the list of installed programs.
6	Click Uninstall and follow the instructions on the screen.
	Result: EcoStruxure Cobot Expert is uninstalled from your computer.

Operator Risk Estimation and Reduction

In some applications, additional operator protection such as point-of-operation guarding must be provided and/or technical measures must be taken to help avoid or at least limit any possible impact forces caused by the overall system to the operator. Depending on your risk assessment, take into account the applicable values for impact forces in accordance with ISO/TS 15066. This is necessary if the operator's hands and other parts of the body are free to enter the pinch points or other hazardous areas where injury can occur. Software products alone cannot protect an operator from injury. For this reason the software cannot be substituted for or take the place of point-of-operation protection.

Ensure that appropriate safety measures and mechanical/electrical interlocks related to point-of-operation protection have been installed and are operational before placing the equipment into service. All interlocks and safety measures related to point-of-operation protection must be coordinated with the related collaborative robotic equipment and software programming.

AWARNING

CRUSHING, SHEARING, CUTTING AND IMPACT INJURY

- Avoid contact exposure to sensitive areas of the body, including the skull, forehead, larynx, eyes, ears or face.
- Define the clearance distance to the collaboration zone of operation of the Lexium Cobot Arm to be within the mechanical limits such that the operational staff do not have access to, nor can be enclosed between, the Lexium Cobot Arm user-defined collaboration zone and the mechanical limits of operation.
- Ensure that movement of the Lexium Cobot Arm is in accordance to the user-defined limits as soon as a person enters the collaboration zone of operation.
- All barriers, protective doors, contact mats, light barriers, visual protection system, and other protective equipment must be connected, configured correctly and enabled whenever the robot mechanics are under power.
- The Lexium Cobot Arm must always be considered active even though the Lexium Cobot Arm has reached an intermediate stop position waiting for a run command.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

NOTE: The configuration of the robot mechanics, the Tool Center Point (TCP) velocity, as well as the additional payload have an effect on the total energy, which can potentially be a source of damage and injury.

As inertia and payload of the Lexium Cobot increases, so do the physical requirements for controlling and reducing forces and pressures.

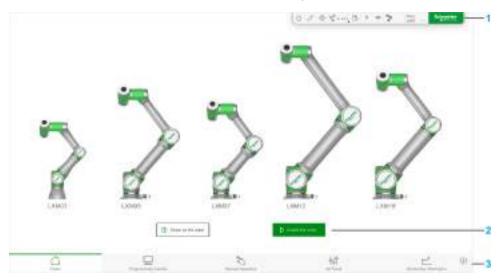
AWARNING

UNINTENDED MACHINE OPERATION

- Use appropriate risk mitigation measures taking into account the inertia and the payload of the Lexium Cobot.
- Coordination of safety measures and mechanical/electrical interlocks for point-of-operation protection is outside the scope of the software or other implementation referenced in this documentation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

EcoStruxure Cobot Expert Basics


What's in This Chapter

User Interface	
Software Settings	
Connecting the Lexium Cobot	
Starting Up the Lexium Cobot System	
Shutting Down the Lexium Cobot System	
Delegating the Control of the Lexium Cobot	
Switching between a Physical Lexium Cobot and a Simulation	
Displaying the Log Information	
Checksum for Safety-Related Parameters	
Displaying the Monitoring Information	

User Interface

Home Screen

This is the **Home** screen of EcoStruxure Cobot Expert:



The main interface consists of:

- 1 Top menu
- 2 Switch buttons
- 3 Feature bar

Top Menu

The top menu contains features for setting and managing the Lexium Cobot system and EcoStruxure Cobot Expert.

Number	Description	Function
1	Off ⁽¹⁾	Power off the Lexium Cobot Controller, page 44
2	Remote control	Delegate the control to a remote source ⁽²⁾ , page 50.
3	Settings	Configure the system and the Lexium Cobot parameters, page 67
4	Operation mode	Switch between real Lexium Cobot and simulation, page 53
5	Log	Display the Log information , page 55
6	User interface description	Display the user interface description, page 36
7	Signal ⁽³⁾	Signal strength indicator
8	Lexium Cobot connection	Connect or disconnect to the Lexium Cobot Controller, page 39
9	Checksum	Checksum for safety-related parameters, page 57
10	More	Window size control and sign out

¹ You can only power off the Lexium Cobot Controllers in EcoStruxure Cobot Expert. To power on the Lexium Cobot Controllers, use the Control Stick.

- **2** While the Lexium Cobot system is controlled by the remote source, EcoStruxure Cobot Expert is locked.
- **3** If the system is connected with cables, the signal strength indicator displays full signal strength.

NOTE: The features available in the top menu vary between the different interfaces of the software. The specific features for the individual interfaces are described in the respective sections in this document.

Switch Buttons

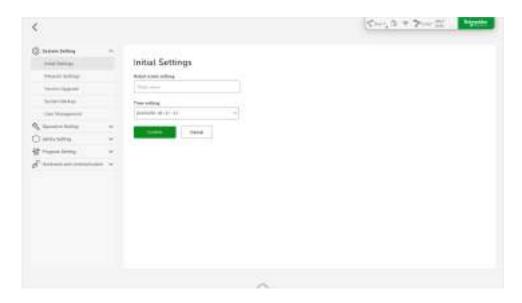
Use the switch buttons to power on or off the Lexium Cobot Arm and to enable or disable it.

Number	Description	Function
1	Power on the robot / Power off the robot	Power the Lexium Cobot Arm on or off, page 44
2	Enable robot / Disable robot	Enable or disable the Lexium Cobot Arm, page 44

NOTE: The Lexium Cobot Arm can only be enabled when it is powered on as it needs to be disabled to be powered off.

Feature Bar

In the feature bar, you will find the main features for operating the Lexium Cobot system (for example the **Programming Control**, Lexium Cobot motion control, I/O control and **Monitoring Information**).



Number	Description	Function
1	Home	Return to the Home screen
2	Programming Control	Display the Programming Control interface of EcoStruxure Cobot Expert, page 172
3	Manual Operation	Operate the Lexium Cobot Arm manually, page 60
4	I/O Panel	Set the I/O parameters, page 142
5	Monitoring Information	Monitor the Lexium Cobot status, page 59
6	About	Switch the language
		Adjust the sound volume
		Disable and enable the Soft Keyboard (only Windows)
		Information about the Lexium Cobot Controller and Lexium Cobot Arm (for example, commercial reference and serial number)
		Information about the software and firmware versions

NOTE: On the **Home** screen, the feature bar is constantly displayed at the bottom. In the other windows of the software, the feature bar is being minimized. To display the feature bar, click the arrow icon at the bottom of the screen:



Example:

User Interface Description

You can display an overlay help in the user interface, which describes the particular icons and buttons of the **Home** screen.

To display the overlay, click the **Help** icon in the menu bar.

To close the overlay, click Got it.

Software Settings

Overview

To change software settings, for example, the language or the sound volume, or to view the version information, click the **About** icon in the feature bar.

In this dialog box, you will find the following settings and information:

- · Language settings
- Sound volume
- Soft keyboard (only Windows)
- User level
- · App version
- Servo version
- SCB/PSCB version⁽¹⁾
- · Controller version
- CR Arm⁽²⁾
- SN Arm⁽³⁾
- CR Controller(2)
- SN Controller⁽³⁾
- Official website (Lexium Cobot page on the Schneider Electric Website)
- (1) SCB: Safety-related Control Board / PSCB: Portable Safety-related Control Board
- (2) CR: Commercial Reference
- (3) SN: Serial Number

NOTE: The version information of the Lexium Cobot Arm is only available when the equipment is connected and under power.

Language Settings

EcoStruxure Cobot Expert provides the following languages:

- Chinese
- English
- Japanese

To switch the language, click the respective language to be displayed.

NOTE: When **Auto** is selected, EcoStruxure Cobot Expert detects the equipment system language and applies it to the user interface, when available. Otherwise, English is applied.

Soft Keyboard

If you want to use only the hardware keyboard when using the Windows operating system, and do not want the soft keyboard to be displayed, select **Disable**.

If you want to use the soft keyboard, select **Enable**.

Connecting the Lexium Cobot

Overview

EcoStruxure Cobot Expert can connect to any Lexium Cobot Controller. There are two software installation versions available that provide the following connection options:

Software installation version	Connection options	
EcoStruxure Cobot Expert for Windows PC	LAN or WiFi connection	
EcoStruxure Cobot Expert for Android device	WiFi connection	

NOTE: To connect to the Lexium Cobot system, the device with EcoStruxure Cobot Expert installed must be connected to the same network as the Lexium Cobot Controller.

User Levels

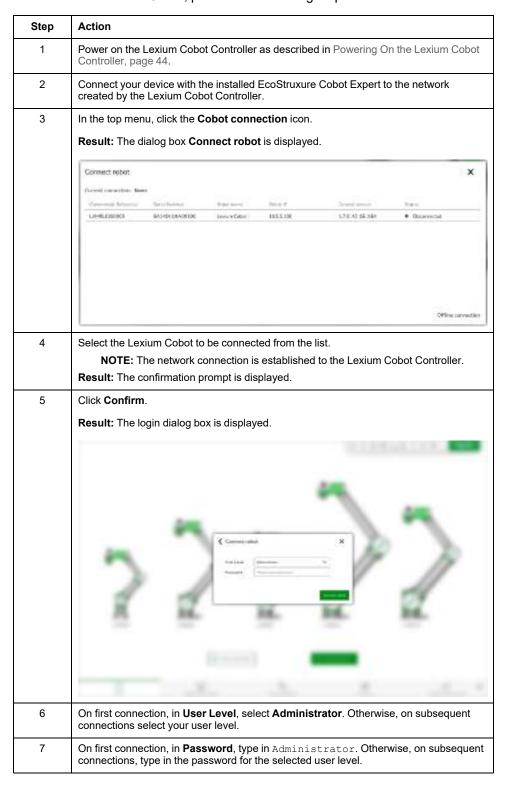
The Lexium Cobot system provides three different user levels for:

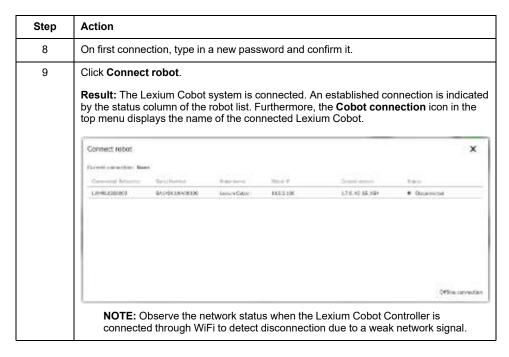
- Setting up the system (Administrator)
- Editing of the application program (**Technician**)
- Operating the system (Operator).

The following table presents in detail which user level has which permissions:

User level	Is authorized for
Operator	Opening and browsing the program stored in the Lexium Cobot Controller
	Starting, pausing and stopping the program
	Adjusting the program speed
	Starting and stopping the Lexium Cobot Arm
	Displaying Log information and state of the Lexium Cobot needed for program execution and observation
Technician	Performing the operations listed in the Operator user level
	Unlocking programs
	Creating, editing, saving programs
	Debugging programs
	Adjusting of settings required for program editing
	Modifying non-safety-related content
	Delegating the control source to remote control and requesting it back
Administrator	Performing the operations listed in the Operator and the Technician user levels
	Accessing, editing and modifying the user management page
	Displaying and modifying the pages
	Modifying the safety-related settings

First Connection to the Lexium Cobot Controller


When you connect for the first time, after a reset to factory settings, or after a firmware upgrade of the Lexium Cobot Controller, the password for the **Administrator** user level is Administrator. With the first login you will need to change the password for the **Administrator** user level. For guidance on creating strong passwords, refer to Creating Strong Passwords, page 26.


NOTE: Changing the password is mandatory, otherwise it will not be possible to log into the Lexium Cobot Controller.

The user levels **Technician** and **Operator** can be activated in User Management, page 74.

Connecting the Lexium Cobot

To connect the Lexium Cobot, perform the following steps:

NOTE: Alternatively, you have the option to manually connect a Lexium Cobot system by typing its IP address. Therefore, click **Offline connection** in the **Connect robot** dialog box and follow the instructions.

Displaying the Connection Information

In the top menu, click the Cobot connection icon.

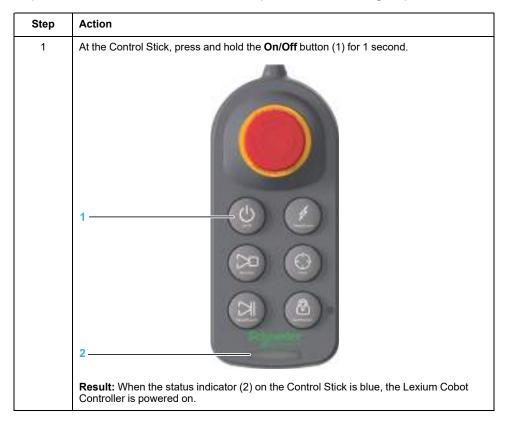
Result: The dialog box **Connect robot** is displayed and presents the connection information.

Description of the Connection information

The connection information displays the following data:

Name	Description
Current connection	Name of the connected Lexium Cobot Controller.
Commercial reference	Commercial reference of the Lexium Cobot Arm (only updated after the Lexium Cobot Arm has been powered on).
Serial number	Serial number of the Lexium Cobot Arm.
Robot name	Configurable name of the Lexium Cobot Controller. For further information, refer to Initial Settings, page 67.
Robot IP	IP address of the Lexium Cobot Controller.
Control version	Firmware version of the Lexium Cobot Controller.
Status	Displays the connection status of the Lexium Cobot (connected, disconnected or occupied).
Cloud icon	Navigates to the Version Upgrade section, page 69.

Starting Up the Lexium Cobot System

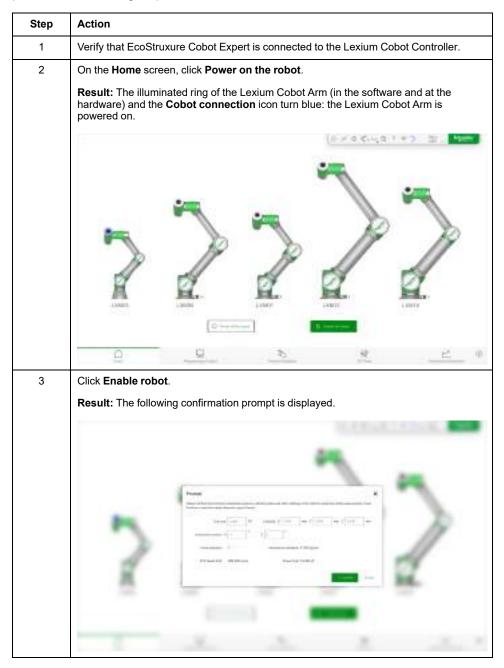

Start-Up Sequence

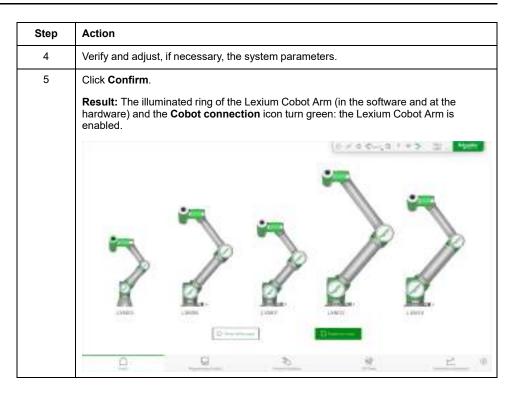
To start up the Lexium Cobot system, perform the following tasks:

- Power on the Lexium Cobot Cabinet Controller or Lexium Cobot Compact Controller
- 2. Power on the Lexium Cobot Arm
- 3. Enable the Lexium Cobot Arm

Powering On the Lexium Cobot Controller

To power on the Lexium Cobot Controller, perform the following step:




NOTE: When using the Lexium Cobot Compact Controller, you can alternatively press and hold the power button \circlearrowleft (1) for 3 seconds.

Powering on and Enabling the Lexium Cobot Arm

To power on and enable the Lexium Cobot Arm from EcoStruxure Cobot Expert, perform the following steps:

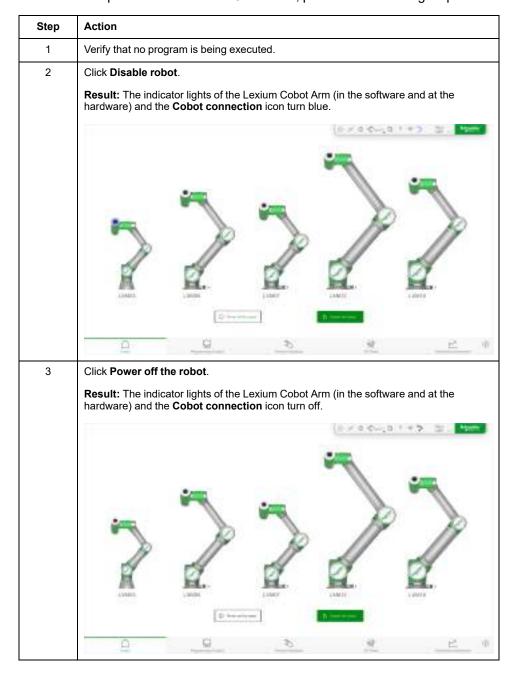
NOTE: Alternatively, you can use the Control Stick to power on and enable the Lexium Cobot Arm. For further information, refer to chapter *Lexium Cobot Control Stick Details* in the *Lexium Cobot Hardware Guide*.

Shutting Down the Lexium Cobot System

Overview

Removing power from the Lexium Cobot Controller during operation of the Lexium Cobot Arm may cause a loss of control of the end-effector. The Lexium Cobot Arm must be disabled and powered off before removing power from the Lexium Cobot Controller.

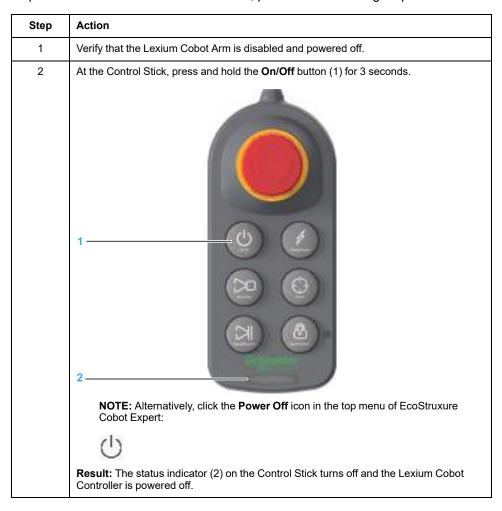
AWARNING


UNCONTROLLED EQUIPMENT OPERATION

Ensure that the Lexium Cobot Arm is disabled and powered off before removing power from the Lexium Cobot Controller.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Disabling and Powering off the Lexium Cobot Arm


To disable and power off the Lexium Cobot Arm, perform the following steps:

NOTE: Alternatively, you can use the Control Stick to disable and power off the Lexium Cobot Arm. For further information, refer to chapter *Lexium Cobot Control Stick Details* in the *Lexium Cobot Hardware Guide*.

Power Off the Lexium Cobot Controller

To power off the Lexium Cobot Controller, perform the following steps:

NOTE: When using the Lexium Cobot Compact Controller, you can alternatively press and hold the power button \circlearrowleft (1) for 5 seconds.

Delegating the Control of the Lexium Cobot

Overview

Lexium Cobot provides three control sources for sending commands:

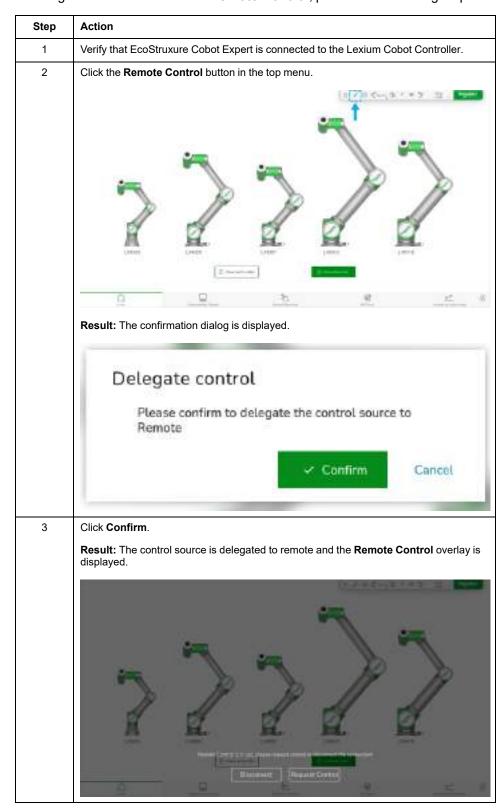
- EcoStruxure Cobot Expert
- Remote

Includes LexiumCobotCommunication library and Digital Input Functions. For further information, refer to Function Settings, page 143.

Control Stick

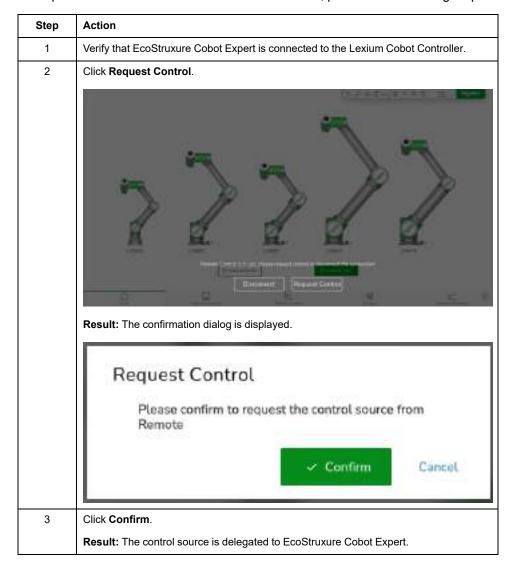
For further information, refer to chapter *Lexium Cobot Control Stick Details* in the *Lexium Cobot Hardware Guide*.

Except for specific commands (see Delegating the Control Source to Remote Control, page 51), only one control source is active at a time, the others are locked. Commands received from the locked sources are not executed.


NOTE: The following commands are always performed regardless of the control source:

- All special safety-related inputs (refer to Special Safety IO, page 116)
- · DI function Protective Stop
- · DI functions Level 1 and Level 2 Override Mode

Switching the control source always results in a paused program or stopped movement.


Delegating the Control Source to Remote Control

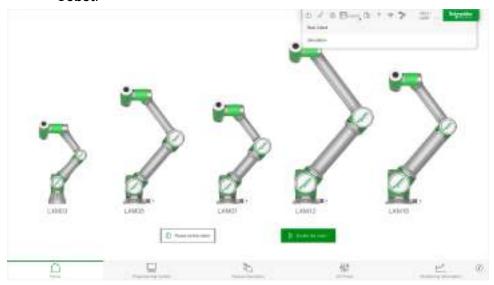
To delegate the control source to **Remote Control**, perform the following steps:

Requesting the Control Source from Remote Control

To request the control source from **Remote Control**, perform the following steps:

Switching between a Physical Lexium Cobot and a Simulation

Overview


EcoStruxure Cobot Expert can either work with a physical Lexium Cobot Arm or with a digital representation of different sizes of the arm in combination with a physical Lexium Cobot Controller.

In **Simulation** operation mode you can control the digital representation of the Lexium Cobot Arm, access inputs and outputs, including the physical I/O, and program offline.

The active operation mode (**Real Cobot** or **Simulation**) is displayed in the top menu. You can switch the operation mode by clicking the status button.

NOTE:

- To switch between operation modes, the Lexium Cobot Arm must be disabled and powered off.
- The display of the serial number, commercial reference, and servo version of the Lexium Cobot Arm is updated only when the physical Lexium Cobot Arm is powered on after switching from Simulation to Real Cobot.

Activating the Simulation Operation Mode

To activate the **Simulation** operation mode, perform the following steps:

Step	Action
1	Disable and power off the Lexium Cobot Arm.
2	Click the Operation Mode button in the top menu and select Simulation.
	Result: The confirmation prompt is displayed.
3	Click Confirm.
	Result: The Simulation operation mode is active.

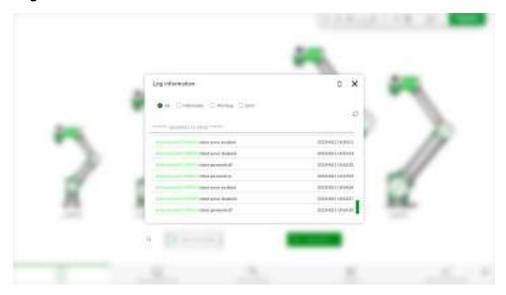
Selecting the Size of the Digital Representation

To select a specific size of the digital representation, go to **Manual Operation** in the feature bar and select the size from the **Robot model** dropdown list.

For further information on the interface, refer to Operating the Lexium Cobot Manually, page 60.

Activating the Real Cobot Operation Mode

To activate the **Real Cobot** operation mode, perform the following steps:


Step	Action
1	Disable and power off the digital representation of the Lexium Cobot Arm.
2	Click the Operation Mode button in the top menu and select Real Cobot.
	Result: The confirmation prompt is displayed.
3	Click Confirm.
	Result: The physical Lexium Cobot Arm is active.

NOTE: Verify your payload parameters after using the simulation mode.

Displaying the Log Information

Overview

All operation information, advisory, and errors are automatically recorded in the **Log information**.

To display the **Log information**, click the **Log** icon in the top menu:

You can use these **Log information** for data analysis and processing, event tracking and solving issues.

If an error is detected during Lexium Cobot operation, display the **Log information** to find out the cause of the detected error and perform a self-inspection if possible. If you could not resolve the error, contact your local Schneider Electric service representative.

When you select the option **All**, the three categories of entries (**Information**, **Warning**, and **Error**) are displayed, in chronological order from the newest to the oldest.

You can filter the list by **Information**, **Warning**, and **Error** by activating the corresponding option.

Information List

When the state of the Lexium Cobot changes, the change is recorded in the **Log Information**. The **Information** list displays status changes of the Lexium Cobot.

Warning List

A **Warning** is displayed in case of abnormal movements or abnormal status of the Lexium Cobot.

This information is stored in the **Log Information** in the **Warning** list for troubleshooting and monitoring.

Error List

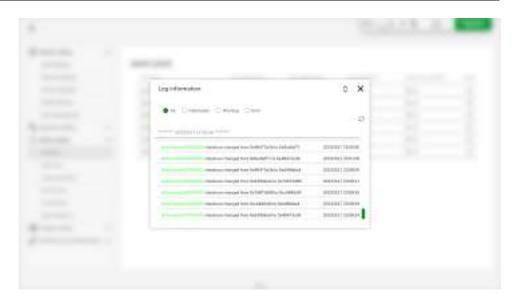
Detected errors are displayed in case of incorrect motions or when the Lexium Cobot is in an error state.

This error information is stored in the ${\bf Log\ Information}$ in the ${\bf Error\ list}$ for troubleshooting and monitoring.

Checksum for Safety-Related Parameters

Overview

The checksum for safety-related parameters is an 8-digit hexadecimal number that is displayed in the top menu after connecting the Lexium Cobot.


The checksum is used to represent the configuration of the safety-related parameters of the Lexium Cobot in the form of letters and numbers. If the safety-related parameters are changed, the checksum changes accordingly.

Checksum Changes

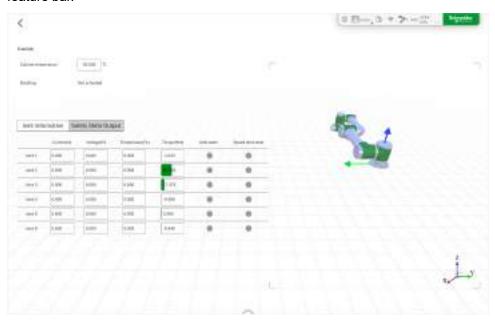
When you change any safety-related parameters, the message **Security parameters have been modified** is displayed and the checksum code is updated.

Changes to the checksum appear in the **Log information**.

Security Information Window

You can verify the checksum code and the safety-related parameters of the Lexium Cobot by clicking the checksum in the top menu.

The **Security Information** window is displayed. This window provides an overview of the safety-related parameters.


To display a specific category, click the respective menu item.

NOTE:

- The parameters are read-only and cannot be edited in this window.
- The three user levels have the permission to display this page.

Displaying the Monitoring Information

To display a visual representation of the Lexium Cobot Arm and information about the Lexium Cobot system and its joints, select **Monitoring Information** in the feature bar.

The **Cabinet** section presents the temperature of both Lexium Cobot Controllers and, for the Lexium Cobot Compact Controller, the status of the derating feature.

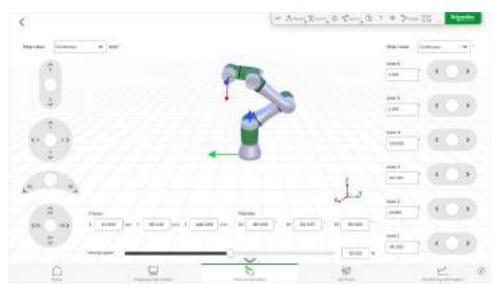
NOTE: The temperature of the Lexium Cobot Compact Controller housing may exceed the temperature displayed in EcoStruxure Cobot Expert. The displayed value presents the temperature inside the housing and depends on the application. For further information on heat dissipation, refer to section *Hot Surfaces* in chapter *Residual Risks* in the *Lexium Cobot Hardware Guide*.

The **Joint Information** tab presents the current, voltage, temperature, torque, limit state and speed limit state of each joint.

The **Safety state output** tab presents the active limit modes of the Lexium Cobot. When a limit mode is active, the indicator lights up green.

NOTE: Enable the Lexium Cobot Arm to read the values. If the Lexium Cobot Arm is disabled, the values are set to 0 and the visualization therefore does not represent actual values.

Operating the Lexium Cobot Manually

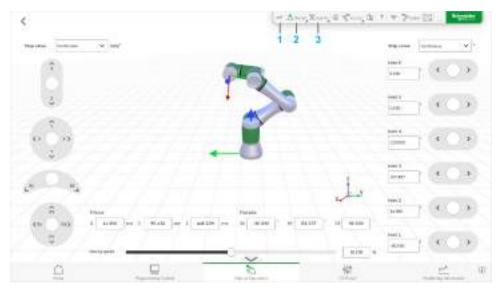

What's in This Chapter

Manual Operation Interface	6	0
Lexium Cobot Motion Types	6	4

Manual Operation Interface

Overview

To operate the Lexium Cobot manually, select **Manual Operation** in the feature bar.



Coordinate Systems

The Lexium Cobot system supports the customization of the following two coordinate systems in EcoStruxure Cobot Expert:

- · Tool coordinate system (TCS)
- User coordinate system (UCS)

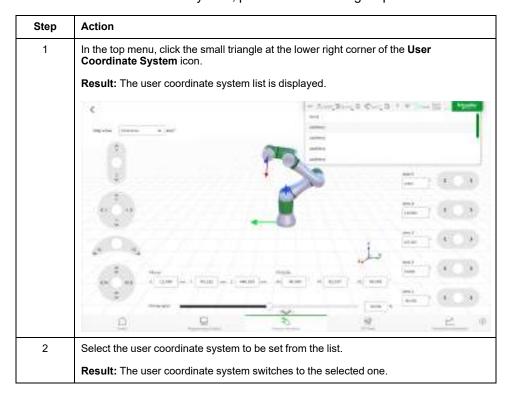
Both coordinate systems can be adjusted in the settings (refer to TCP Settings, page 76, and User Coordinate System, page 91 for this purpose). The digital representation displays these two coordinate systems in the **Manual Operation** interface.

- **1 Switch Coordinate System** for switching between tool coordinate system and user coordinate system. The active system is displayed green.
- **2 User Coordinate System** dropdown list for selecting the UCS to be used when active.
- **3 Tool Coordinate System** dropdown list for selecting the TCS to be used when active.

NOTE: After switching the coordinate system, the model remains in the same position but the coordinates are now displayed in the new coordinate system.

Switching the Motion Reference Coordinate System

To switch the motion reference coordinate system, click the **Switch Coordinate System** button in the top menu.

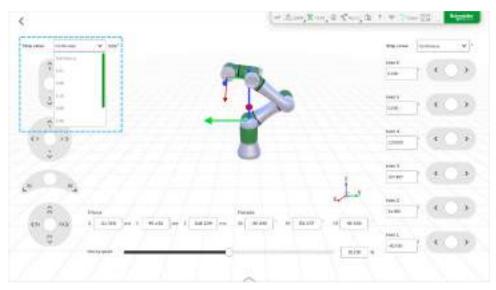

When the **User Coordinate System** icon color turns green, it means that the user coordinate system is being used.

NOTE:

- The tool coordinate system refers to the end flange coordinate system by default. The origin of the flange coordinate system is the center of the flange end. For more information, refer to TCP Settings, page 76
- The default user coordinate system of the Lexium Cobot Arm is the world coordinate system with the base center of the Lexium Cobot Arm as the origin. For further information, refer to User Coordinate System, page 91.

Switching the User Coordinate System

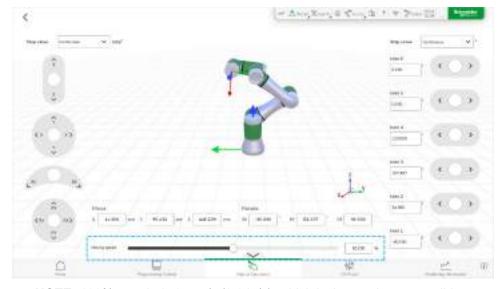
To switch the user coordinate system, perform the following steps:


Switching the Tool Coordinate System

To switch the tool coordinate system, perform the following steps:

In the top menu, cl	ick the small tries					
System icon.	ick the small than	ngle at the lower ri	ight corner of th	ne Tool C	oord	linate
Result: The tool c	oordinate system	list is displayed.				
<		- 7.0 11 mg	1,710,0 (1.1) 10	1 4 1		-
		0				1
		1 20		**** 	60	4
e Çe					•	
ADIA			1	-	4	
		man	ALM AL MAN	-	90	
	0		9	448	60	. 4
	Name and			-	1-0-1	
				(= Acc_2c0 Co0		

Adjusting the Step Value


At the top of both sides of the **Manual Operation** interface are step value options that you can use to control the step values of the lower virtual jog buttons. The movement distance or angle of the manual operation is controlled by changing the step value. The smaller the step value, the more precise the Lexium Cobot Arm motion will be.

Controlling the Moving Speed

The moving speed of the Lexium Cobot Arm can be set in two ways:

- By dragging the movement speed bar at the bottom of the Manual Operation interface.
- By clicking on the percentage value next to the movement speed bar and entering the specific speed as a percentage of maximum speed.

NOTE: 100% equals 250 mm/s (9.8 in/s), which is the maximum possible speed for manual movement.

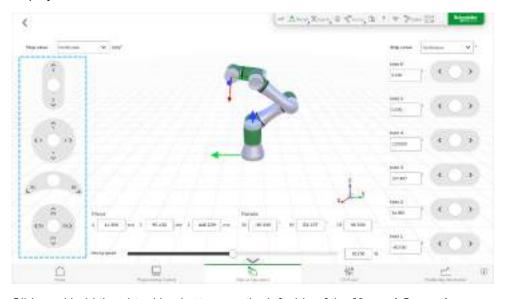
Lexium Cobot Motion Types

Hand-Guided Mode

In hand-guided mode, you can manually guide the Lexium Cobot Arm to a position by hand.

To enter the hand-guided mode, press and hold the **FREE** button at the Lexium Cobot Arm.

NOTE: You can also use the **play/pause** button to enter the hand-guided mode if you configure the buttons accordingly. For more information on configuring the buttons of the Lexium Cobot Arm, refer to Auxiliary Hardware Settings, page 133.

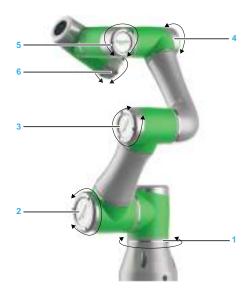

The maximum dragging speed is limited; the default value is 250 mm/s. If this limit is exceeded, the Lexium Cobot Arm leaves the hand-guided mode. For further information on configuring the dragging speed limit, refer to Hand-Guided Mode, page 109.

Spatial Motion

Spatial movement means that the origin of the tool coordinate system of the Lexium Cobot Arm moves in the Cartesian space.

You can choose to move in the user coordinate system or in the tool coordinate system.

As presented in the following figure, the spatial motion refers to the motion of each joint, and the **Manual Operation** of the spatial motion of the Lexium Cobot Arm is displayed as follows.

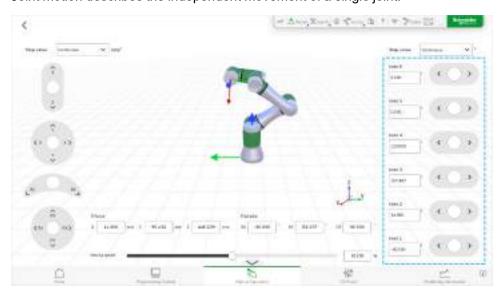


Slide and hold the virtual jog buttons on the left side of the **Manual Operation** interface. The origin of the tool coordinate system performs the corresponding spatial movement in the user coordinate system.

When you release the virtual jog button, it automatically returns to its original position and the Lexium Cobot Arm stops moving.

Joint Motion

The Lexium Cobot Arm consists of six joints.

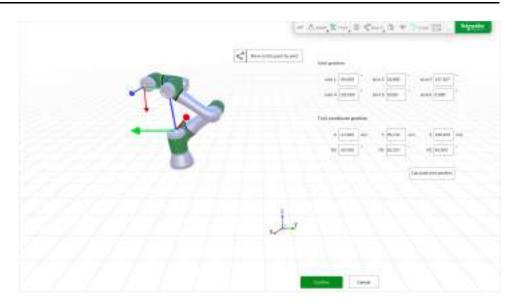


 1 Joint 1
 4 Joint 4

 2 Joint 2
 5 Joint 5

 3 Joint 3
 6 Joint 6

Joint motion describes the independent movement of a single joint.


If you slide and hold the virtual jog buttons at the right side of the **Manual Operation** interface, the corresponding joint immediately rotates in the corresponding direction.

When released, the virtual jog button automatically returns to the origin, and the Lexium Cobot Arm stops moving.

Position Motion

With position motion, you can operate the Lexium Cobot Arm manually to the designated position.

You can define the joint position of the Lexium Cobot Arm and the spatial position of the origin of the tool coordinate system in the user coordinate system.

Moving the Lexium Cobot Arm via Position Motion

To move the Lexium Cobot Arm via position motion, perform the following steps:

Step	Action
1	In the Manual Operation interface, click the joint information or spatial position information box to be modified.
	Result: The position motion interface is displayed and the Manual Operation interface is closed.

To move the Lexium Cobot Arm to a specific joint position, proceed as follows:

Step	Action
1	Under Joint Position , type in the end positions of the six joints.
2	To move the Lexium Cobot Arm to the designated position, press and hold the Move to this point by joint button until it is reached.
3	Click Confirm.
	Result: The Lexium Cobot Arm is in the designated position and the position motion interface is closed.

To move the Lexium Cobot Arm to a specific spatial position, proceed as follows:

Step	Action
1	Under Tool Coordinate Position, type in the spatial position of the end point.
2	Click Calculate Joint Position.
3	To move the Lexium Cobot Arm to the designated position, press and hold the Move to this point by joint button until it is reached.
4	Click Confirm. Result: The Lexium Cobot Arm is in the designated position and the position motion interface is closed.

To close the position motion interface in case the Lexium Cobot Arm has not reached the designated position, click ${\bf Cancel}$.

Settings

What's in This Chapter

System Setting	67
Operation Setting	
Safety Setting	
Program Setting	
Hardware and Communication	

System Setting

Initial Settings

Overview

To configure the Lexium Cobot name and the system time, go to **Settings > System Setting > Initial Settings**.

Robot Name Setting

If you assign a unique Lexium Cobot name under **Robot name setting**, this is used as the name for the Lexium Cobot in EcoStruxure Cobot Expert. Assigning a unique name helps identifying the Lexium Cobot when connecting or switching between Lexium Cobot systems.

Time Setting

Set the system time so that the time in the Lexium Cobot Controller is consistent with your local time.

Network Settings

Overview

To define how the Lexium Cobot should acquire the IP address, go to **Settings > System Setting > Network Settings**. By default, the Lexium Cobot gets the IP address automatically.

In case the IP address of the Lexium Cobot needs to be set, ensure that the devices communicating with the Lexium Cobot over the network are on the same subnet as the Lexium Cobot.


NOTE:

- Disable and power-off the Lexium Cobot Arm when setting the IP address.
- After confirmation of the address change, a network restart is performed automatically by the software.

Version Upgrade

Overview

To upgrade the Lexium Cobot firmware, go to **Settings > System Setting > Version Upgrade**.

Upgrading the Components

To upgrade the components, perform the following steps:

Step	Action		
1	Download the firmware package from the Lexium Cobot page on the Schneider Electric website.		
2	Connect the Lexium Cobot, page 39.		
3	Ensure that the Lexium Cobot Arm is disabled and powered off.		
4	In Settings > System Setting > Version Upgrade, click the Select Upgrade File box.		
5	Select the upgrade package and click Confirm .		
	Result: The upgrade package is selected. NOTE: The original file name must remain unchanged.		
6	Click the Select verification file box.		
7	Select the signature file and click Confirm .		
8	Click Start Upgrade. Result: The component selection dialog box is displayed.		
9	Select the components to be upgraded.		
10	Click Upgrade.		
	Result: The upgrade package is being uploaded and installed.		
11	Wait until the Lexium Cobot Controller is automatically powered off and then power on the Lexium Cobot Controller with the Control Stick. NOTE: The Control Stick has no power while the SCB is in update mode and the status indicator is off.		
12	Wait for the start-up and then connect the Lexium Cobot in EcoStruxure Cobot Expert.		
	Result: The upgrade is installed.		
13	Verify the version by clicking the About icon in the feature bar.		

System Backup

Overview

To import and export profiles or to set the automatic program backup, go to **Settings > System Setting > System Backup**.

Export Profiles

Export profiles are configuration files that contain the parameters that are set in the software.

An export profile can include parameters for:

- Controller
- IO name
- Dynamic IO
- System Variables
- Security Zone

The particular profile files are packed in an archive file named lxmcsettings.tar.gz.

Exporting Profiles

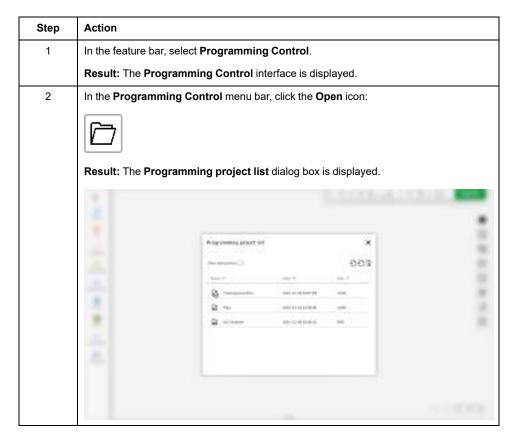
Step	Action
1	In Settings > System Setting > System Backup > Export profiles, select the profiles to be exported.
2	Click Export File.
3	In the Open dialog box, choose a location for the file. NOTE: Already existing profile archives are overwritten.
4	Click Confirm.
	Result: The export is finished. The filename of your exported profile archive is lxmcsettings.tar.gz.

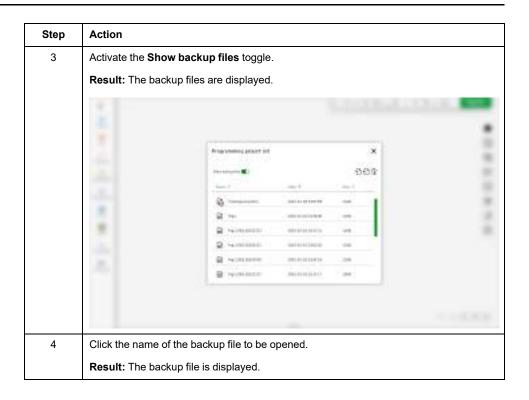
Importing Profiles

Importing configuration files for different Lexium Cobot Controller versions can cause controller errors. When you import configuration files, you must keep the versions of the controllers consistent with the configuration files.

Step	Action
1	In Settings > System Setting > System Backup, click Import File.
	Result: The File Selection dialog box is displayed.
2	Select the profile to be imported.
3	Click Confirm.
	Result: The Import File prompt is displayed. If you proceed, the existing profile will be overwritten with the imported one.
4	Click Confirm.
	Result: The profile is imported.
5	Restart the Lexium Cobot Controller.
	Result: The import is finished.

Timed Auto Program Backup


If you activate the automatic program backup, EcoStruxure Cobot Expert automatically saves a backup of the program according to the set interval.


To enable the timed auto program backup, select an interval and then modify the program to start the interval counter.

The saved program backup is named as follows ProgramName.SystemTime.

For example: ArcTransition.221207142506

Open an Auto Program Backup

User Management

Overview

To manage the different user levels, go to **Settings > System Setting > User Management**.

In this section, you can activate or deactivate the user levels **Technician** and **Operator** and change the passwords for all defined user levels.

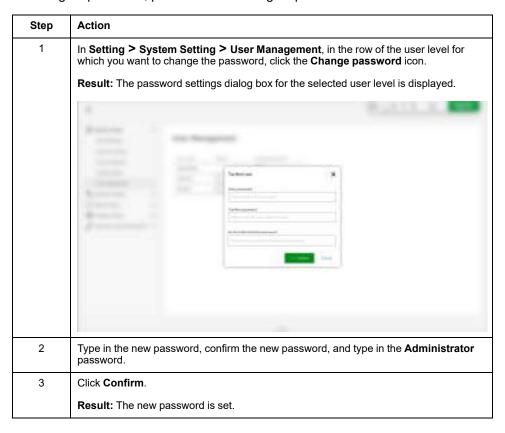
For further information on the user levels, refer to Connecting the Lexium Cobot, page 39.

NOTE:

- This section is only accessible for logged-in administrators.
- For guidance on creating strong passwords, refer to Creating Strong Passwords, page 26.
- For resetting the passwords of the user levels to factory settings, refer to Reset User Levels to Factory Settings, page 28.

Activating or Deactivating the User Levels

To activate a user level, activate the Status toggle.


To deactivate a user level, deactivate the Status toggle.

NOTE:

- The user level Administrator cannot be deactivated.
- The administrator has the option to set the passwords for the technician or operator at first activation. For further information, refer to Connecting the Lexium Cobot, page 39

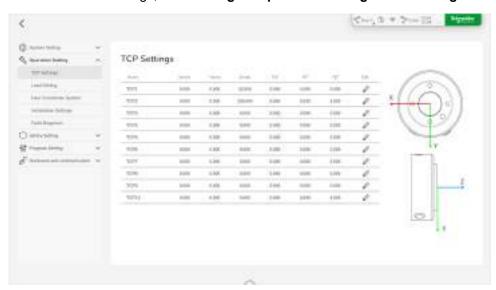
Changing Passwords

To change a password, perform the following steps:

Operation Setting

TCP Settings

Overview


The Lexium Cobot Arm has a default tool coordinate system which is the flange coordinate system.

The origin of the flange coordinate system is the center of the flange end. The positive direction of the Z-axis is defined by the outward direction of the flange end. The negative direction of the Y axis is defined by the line connecting the center of the flange end and the Tool IO connector. The positive direction of the X-axis is defined by the right-hand screw rule.

The parameters of the flange coordinate system cannot be changed.

In addition to the default tool coordinate system, the Lexium Cobot provides 10 additional configurable TCP settings.

To view the TCP settings, click **Settings > Operation Setting > TCP Settings**.

Setting Methods

In EcoStruxure Cobot Expert three methods are available to edit the TCP parameters:

Input settings, page 77

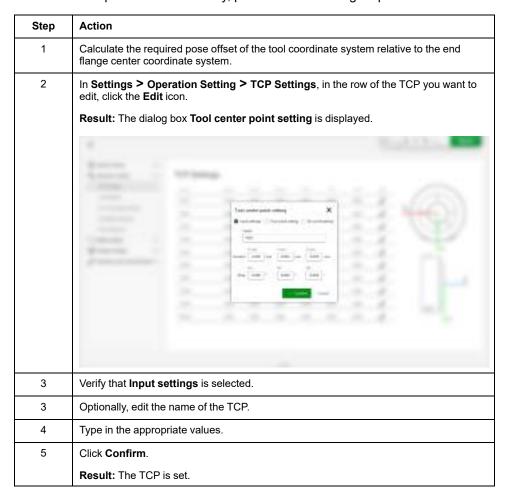
When using input settings you must first calculate the required pose offset of the tool coordinate system relative to the flange coordinate system as needed. Then you can type in these data into the data fields of the dialog box.

When using this method, the Lexium Cobot Arm can be disabled.

Four-point setting, page 78

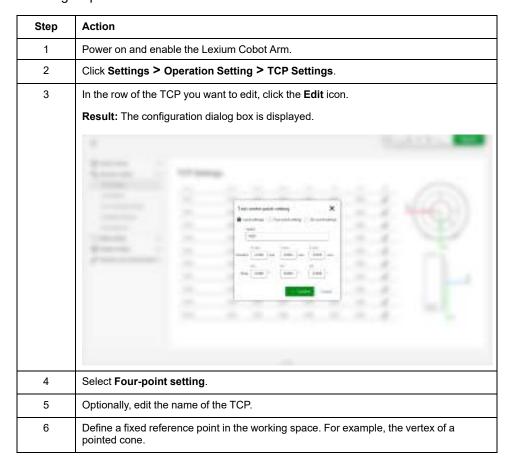
A fixed reference point in the working space is defined. You control the Lexium Cobot Arm so that the TCP endpoint reaches the fixed point from four different poses. Then, the expected pose offset of the tool coordinate system relative to the end flange center coordinate system is calculated automatically.

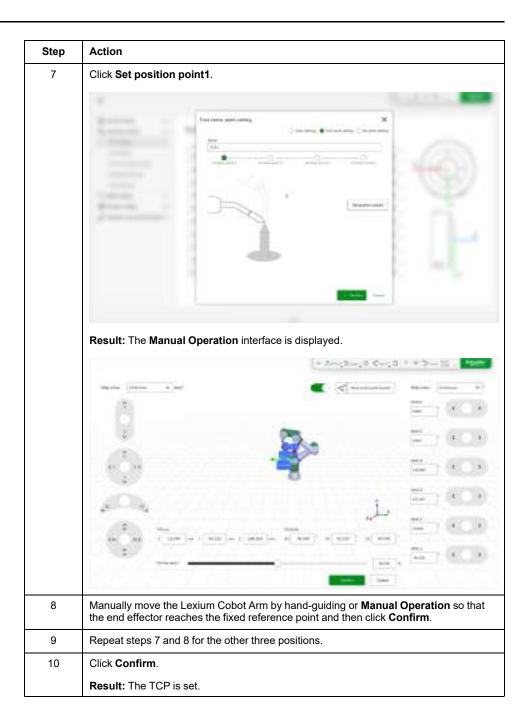
When using this method, the Lexium Cobot Arm must be enabled.


• Six-point setting, page 80

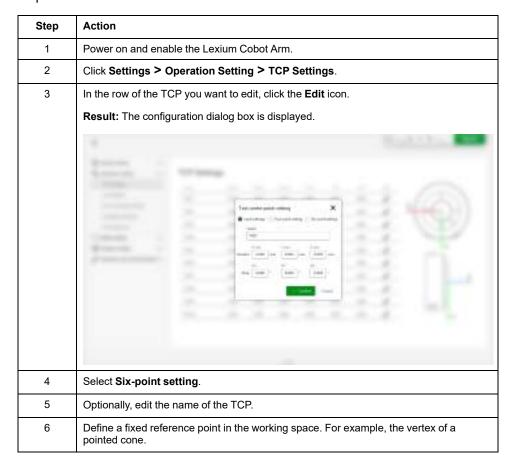
Use the six-point setting when the tool axes at the Lexium Cobot Arm end are not perpendicular or parallel to the Lexium Cobot Arm end flange.

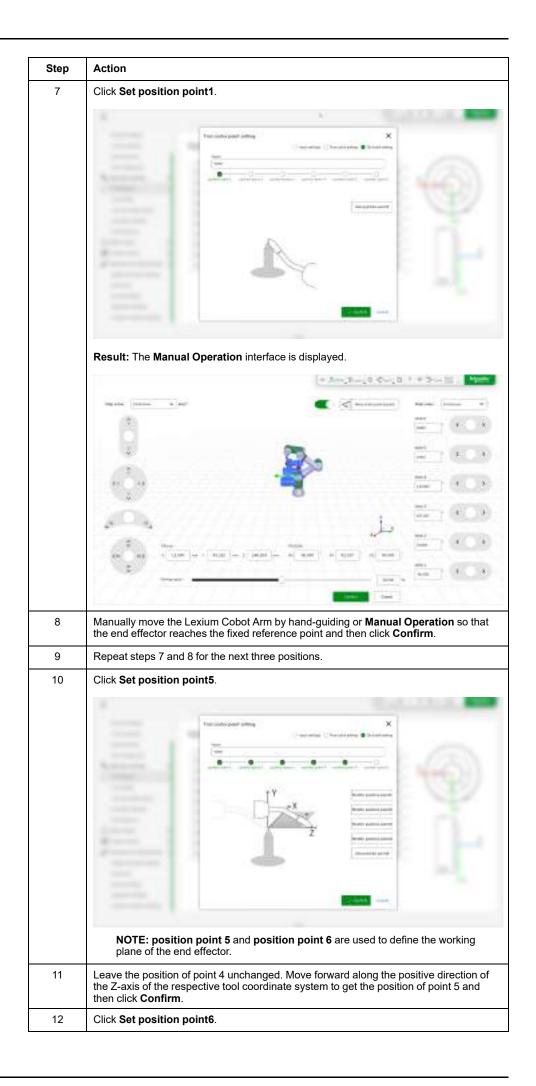
When using this method, the Lexium Cobot Arm must be enabled.


Setting the TCP Parameters Manually (Input Settings)


To set the TCP parameters manually, perform the following steps:

Setting the TCP Parameters via Four-Point Setting


To set the TCP parameters with the four-point setting method, perform the following steps:



Setting the TCP Parameters via Six-Point Setting

To set the TCP parameters with the six-point setting method, perform the following steps:

Step	Action
13	Leave the position of point 5 unchanged. Move forward in the respective XZ plane to get the position of point 6 and then click Confirm .
14	Click Confirm.
	Result: The TCP is set.

Load Setting

Overview

If the payload information is set correctly, the working state of the Lexium Cobot can be calculated correctly by the Lexium Cobot Controllers.

If the set payload information deviates from the physical situation, the Lexium Cobot Controllers can incorrectly detect a collision during the movement of the Lexium Cobot Arm. As a result, the Lexium Cobot Arm movement is stopped. Furthermore, the Lexium Cobot Controllers try to compensate for gravity, which also may cause unanticipated behavior in hand-guided mode.

AWARNING

UNINTENDED EQUIPMENT OPERATION

- Ensure that the payload is mounted at the Tool Center Point.
- · Ensure that the load setting is configured properly.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To edit the load settings, go to **Settings > Operation Setting > Load Setting**.

There are two methods available for setting the payload:

· Manual input mode

In manual input mode, you can manually enter the measured or calculated payload information.

Automatic identification mode

The **Automatic identification mode** can identify and calculate the mass and centroid position of the payload through the Lexium Cobot Arm motion using predefined positions.

Using this mode, the payload must be mounted and the Lexium Cobot Arm must be powered on and enabled.

Manual Input Mode

To type in the measured or calculated information manually, perform the following steps:

Step	Action
1	In Settings > Operation Setting > Load Setting, select Manual input mode.
2	Type in the load setting and the centroid data.
3	Click Confirm.

NOTE:

- The position of the mass center is relative to the Lexium Cobot Arm end flange center, and X, Y and Z of the position of the mass center are also the spatial values in the flange coordinate system.
- Use a 3D design software, for example PTC Creo, AutoDESK Inventor, or SolidWorks, for an accurate calculation.

Prerequisites for Automatic Identification Mode

The following prerequisites must be met before using the **Automatic identification mode**:

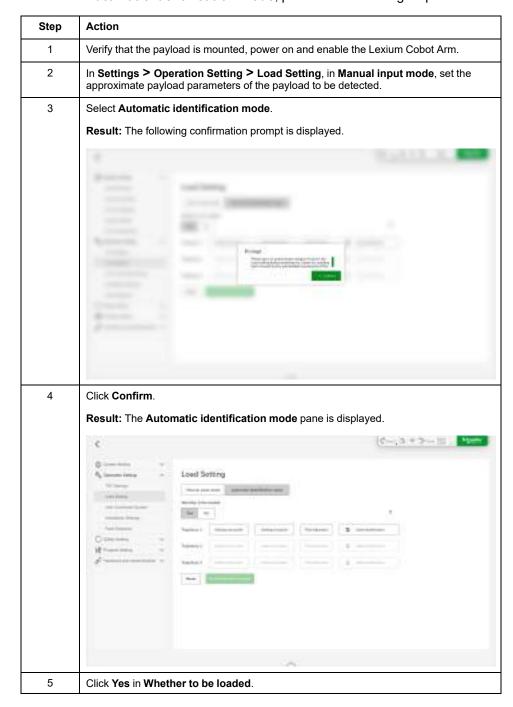
- If the joints have been replaced or the joints have been overtwisted, verify the
 position and direction of the joint. For further information, refer to chapter
 Verification of Mechanical Position in the Lexium Cobot Hardware Guide.
- The payload is installed properly.

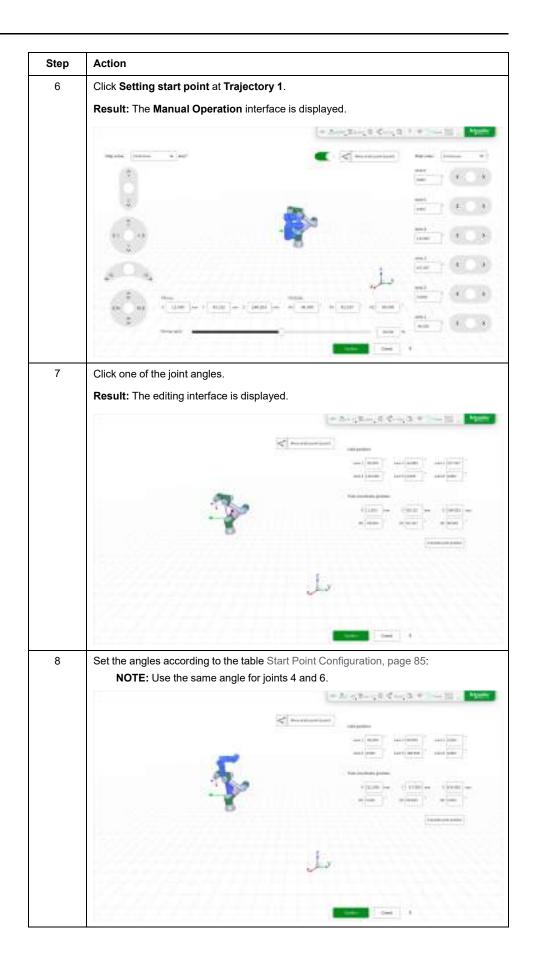
Identification Phases of Automatic Identification Mode

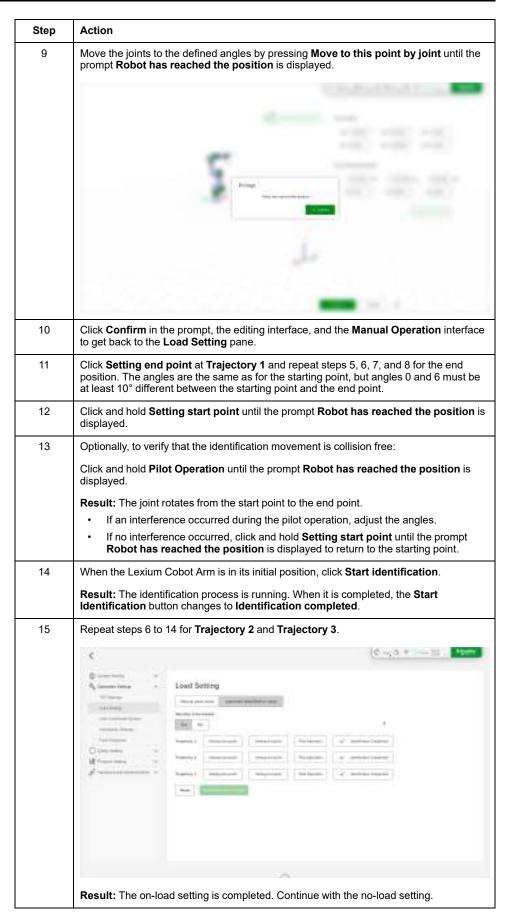
The process for identification follows two phases:

- On-load
- No-load

NOTE: The no-load state is identified only after the on-load identification.

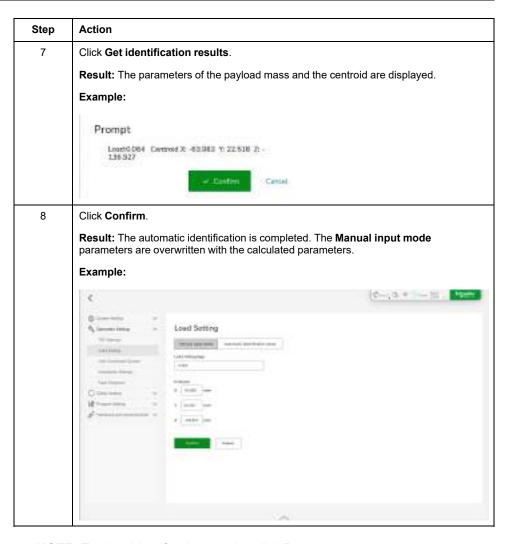

Start Point and End Point Configuration


	Start Point Configuration	End Point Configuration
Trajectory 1	Joint 2 = 90°	Joint 2 = 90°
	Joint 3 = 0°	Joint 3 = 0°
	Joint 4 = -60°60°	Joint 4 = -60°60°
	Joint 5 = 180°	Joint 5 = 180°
	Joint 6 = -60°60°	Joint 6 = -60°60°
	NOTE: Use the same angle for joints 4 and 6.	NOTE: Use the same angle for joints 4 and 6. However, the angles of joints 4 and 6 must differ from the angles of the starting point by at least 10°.
Trajectory 2	Joint 2 = 90°	Joint 2 = 90°
	Joint 3 = 0°	Joint 3 = 0°
	Joint 4 = -60°60°	Joint 4 = -60°60°
	Joint 5 = 180°	Joint 5 = 180°
	Joint 6 = angle of joint 4 + 90°	Joint 6 = angle of joint 4 + 90°
	NOTE: The angle of Joint 6 is 90° greater than the angle of Joint 4.	NOTE: The angle of joints 4 must differ from the angles of the starting point by at least 10°. The angle of Joint 6 is 90° greater than the angle of Joint 4.
Trajectory 3	Joint 2 = 90°	Joint 2 = 90°
	Joint 3 = 0°	Joint 3 = 0°
	Joint 4 = 0°	Joint 4 = 0°
	Joint 5 = 170°175°	Joint 5 = 185°190°
	Joint 6 = 0°	Joint 6 = 0°
	NOTE: Use the same angle for joints 4 and 6.	NOTE : Use the same angle for joints 4 and 6.


NOTE: If the start points are not set correctly, EcoStruxure Cobot Expert displays a notification.

Automatic Identification Mode - Phase 1: On-Load

To use the **Automatic identification mode**, perform the following steps:



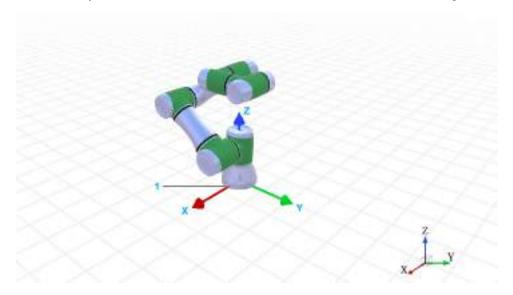
NOTE: To clear identification results, click Reset.

Automatic Identification Mode - Phase 2: No-Load

To use the **Automatic identification mode**, perform the following steps:

Step	Action	
1	Remove the payload.	
2	In Settings > Operation Setting > Load Setting, select Automatic identification mode and select No from Whether to be loaded.	
	Result: The following confirmation prompt is displayed.	
	Prompt	
	Please confirm the load has been removed	
	✓ Control	
3	Click Confirm.	
4	At Trajectory 1, click and hold Setting start point until the prompt Robot has reached the position is displayed.	1
5	Click Start identification.	
	Result: The identification is done.	
6	Repeat steps 4 and 5 for the other trajectories.	
	(C-,3 + C-,3 +	
	Q	
	Section 2 Sectio	
	Others - hanny married married beautiful or processing	
	Francisco - Lange Statement Statement Statement of Statement State	
	No. Company and	
	NA:	

NOTE: To clear identification results, click Reset.


User Coordinate System

Overview

To edit user coordinate systems, go to **Settings > Operation Setting > User Coordinate System**

The default user coordinate system of the Lexium Cobot Arm is the world coordinate system with the base center of the Lexium Cobot Arm as the origin.

1 Cable connector

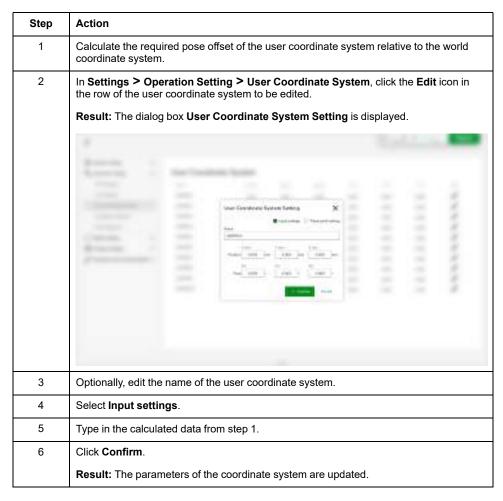
- +X at the Lexium Cobot Arm is in the direction of the power cable at the base.
- +Y is determined based on the right-hand screw rule.
- +Z is the direction in which the base points vertically to the Lexium Cobot Arm.

In addition to the world coordinate system, the Lexium Cobot Arm has 10 user coordinate systems with editable parameters.

There are two methods for setting the parameters of a user coordinate system:

· Input settings

Edit the parameters manually.


· Three-point Setting

Set three points and calculate the directions X, Y, Z and the orientations RX, RY, and RZ automatically.

To use this method, the Lexium Cobot Arm must be powered on and enabled.

Using Input Settings

To edit the parameters of the user coordinate system manually, perform the following steps:

Three-Point Setting Definitions

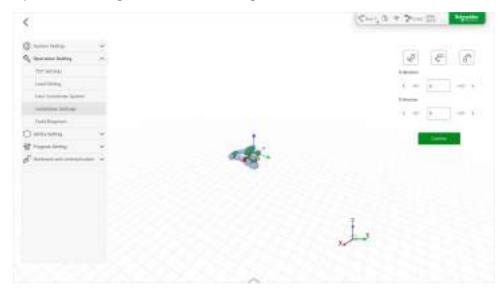
The parameters of the axis directions X, Y, and Z of the respective user coordinate system are automatically calculated from three-position points. The axis directions X, Y, and Z of the user coordinate system generated by the three-point setting are aligned with those of the world coordinate system.

The following table presents the definition of the three points.

Position Point	Description
1	Origin of the user coordinate system.
2	Any point in the forward direction of the X-axis of the user coordinate system.
3	Any point in the first quadrant of the XY-plane of the user coordinate system.

Using the Three-Point Setting

To calculate the parameters of the user coordinate system with the three-point setting, perform the following steps:



Step	Action
6	Repeat steps 4 and 5 for the other two points.
7	Click Confirm.
	Result: The directions X, Y, and Z are calculated.

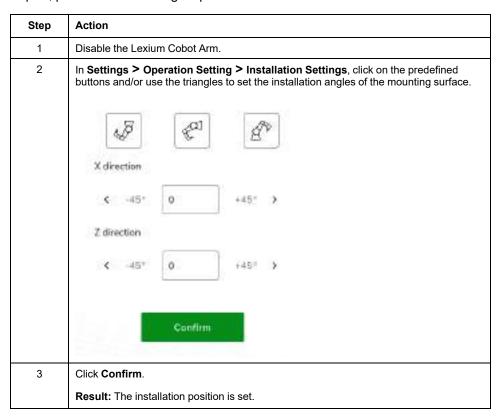
Installation Settings

Overview

To define the installation position of the Lexium Cobot Arm, go to **Settings > Operation Setting > Installation Settings**.

The Lexium Cobot Arm supports installation at any position and angle. After installing the Lexium Cobot Arm, define the information about the installation position and angle of the Lexium Cobot Arm in EcoStruxure Cobot Expert to help ensure the correct representation of the Lexium Cobot Arm by the software and proper functionality of the Lexium Cobot.

AWARNING


UNINTENDED EQUIPMENT OPERATION

Ensure that the installation setting is configured properly.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Setting the Installation

To adjust the installation position of the Lexium Cobot Arm in EcoStruxure Cobot Expert, perform the following steps:

Error Diagnosis

Overview

To display the error diagnosis, go to **Settings > Operation Setting > Fault Diagnosis**.

In case of a Lexium Cobot detected error, the Lexium Cobot Controller automatically saves the information in a compressed file named after the system time and displays it in the **Fault Diagnosis** pane.

In Operation Options, you can download or delete the file.

Operation Options

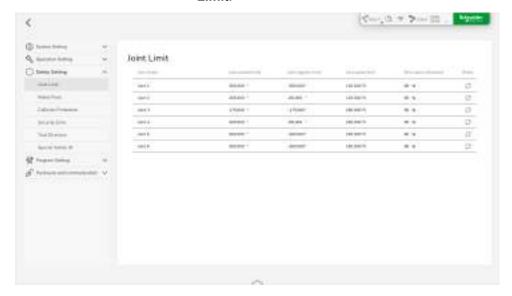
You have the following operation options in the Fault Diagnosis pane:

- 1 Status indicator for an ongoing error diagnosis
- 2 Start diagnosis
- 3 Stop diagnosis
- 4 Download the diagnosis file
- 5 Delete the diagnosis file

Starting an Error Diagnosis

To perform an error diagnosis manually, in **Settings > Operation Setting > Fault Diagnosis**, click the **Start** button.

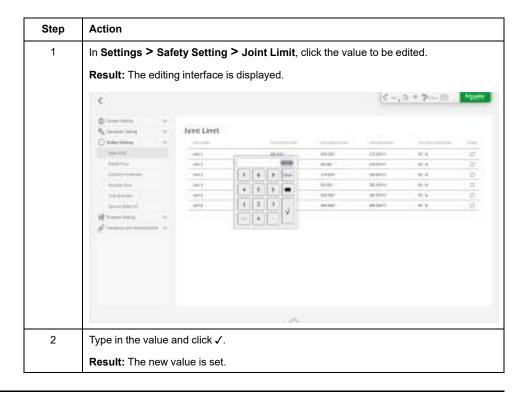
The error diagnosis is executed for 30 seconds. If you want to stop it earlier, click the **Stop** button that is displayed during recording.



Safety Setting

Joint Limit

Overview


To set for each joint of the Lexium Cobot Arm the joint limit angles, the joint limit speed, and the error alarm threshold, go to **Settings > Safety Setting > Joint Limit**:

NOTE:

- Error alarm threshold means that the Lexium Cobot triggers an alarm when the motion displacement error of the mechanical arm is greater than the alarm threshold. 100% represents 1°.
- Since the default values for the positive limit, negative limit and speed limit of the joint are the maximum ranges, you can change them within the default range. The default ranges are presented in the preceding figure.

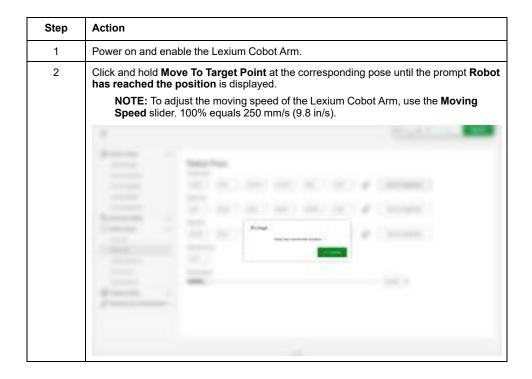
Editing the Joint Limit Parameters

 $\textbf{NOTE:} \ \text{To reset the values of a joint to the default values, click the } \textbf{Reset} \ \text{icon}.$

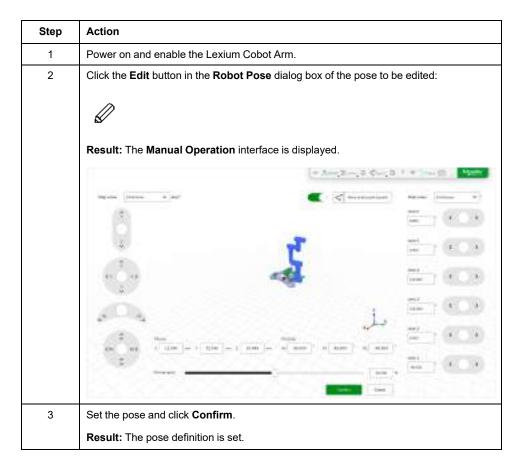
Robot Pose

Overview

To define different poses for the Lexium Cobot Arm, go to **Settings > Safety Setting > Robot Pose**.



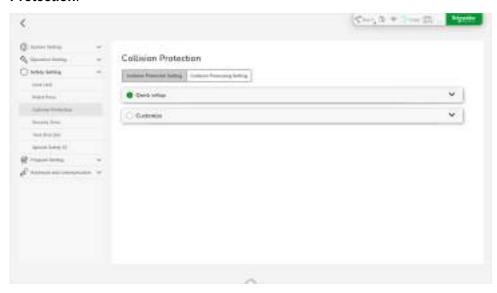
You can use and adjust three different poses for the Lexium Cobot Arm:


- Factory Pose: folding positions of the Lexium Cobot Arm in delivery condition.
- Open Pose: zero position for each joint.
- Home Pose: initial position of the Lexium Cobot Arm. You can define the Home Pose in the software and reach the home position through the Home button on the Control Stick.

Home Pose Error: Acceptable deviation from the designated Home Pose.

Moving to a Pose

Setting the Lexium Cobot Arm Pose


Collision Protection

Overview

In the event of a collision during manual operation, the Lexium Cobot Arm does not rebound, either in motion or at rest. The Lexium Cobot Arm can be pushed within a certain range if the external force continues to act.

In the event of collision during automatic operation, collision handling is performed as specified in **Collision Processing Setting**.

To set up the collision handling, go to **Settings > Safety Setting > Collision Protection**.

Two setting methods for the collision protection are available:

- Quick setup (automatic setting according to a selected protection sensitivity)
- Customize (user-defined setting)

ADANGER

INCORRECT COLLISION SETTINGS

- Ensure that the collision settings are appropriate for the intended operation and lifecycle based on your risk assessment.
- Wherever possible and required, apply all technical measures to help protect the operator from possible collisions when entering the zone of operation.
- Instruct and inform the operator if technical measures to protect from collisions are not possible.
- Ensure that the operator is aware of the active collision setting.

Failure to follow these instructions will result in death or serious injury.

NOTE: The factory setting is **Relax restriction**.

Collision Handling

You can define the following collision handling options in **Settings > Safety Setting > Collision Protection > Collision Processing Setting**:

· Program pause

The program is stopped without any rebound. Subsequently, the program can be continued by using the **Resume program** function. For further information, refer to Function Settings, page 143.

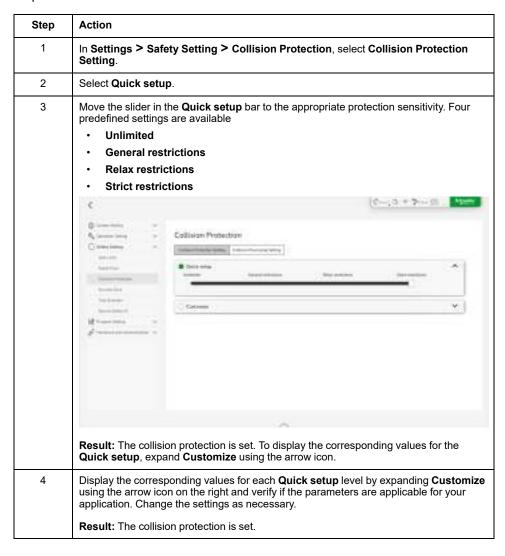
Program terminated and rebounded

The program is terminated and a rebound is performed. You can set the rebound angle from 0° to 3°.

Bouncing Procedure

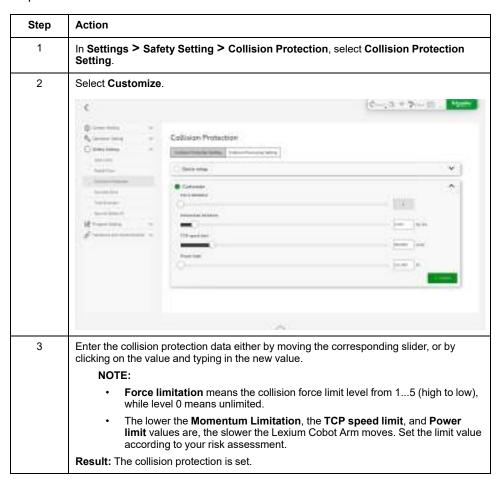
The bouncing procedure depends on the motion type of the Lexium Cobot Arm before the collision. The process is presented in the following figure.

Blue arrows: Original trajectory
Red dots: Bouncing end point
Red lines: Bouncing trajectory
Green dots: Collision point

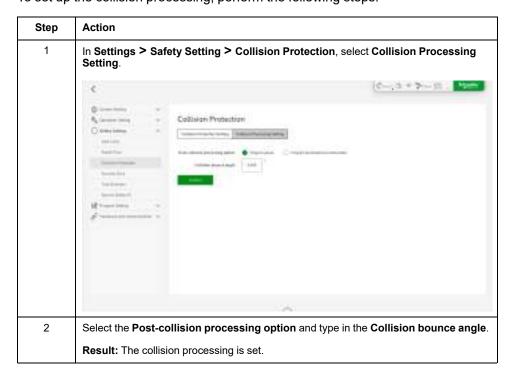

Example:

If the rebound angle value is 3, the Lexium Cobot Arm operates at the moment of a collision as follows:

- If the Lexium Cobot Arm is moving in Cartesian space (linear motion), it bounces back 3 cm (1.18 in) along the original trajectory (a, b).
- If the robot is moving in the joint space (joint motion), the joint with maximum speed at the moment of collision bounces back 3°, and the other joints bounce back correspondingly, so that the Lexium Cobot Arm moves back along the original trajectory.

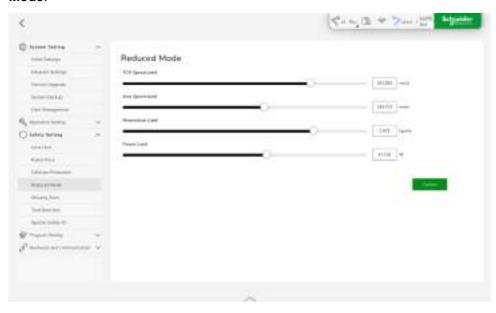

Setting Up Collision Protection via Quick Setup

To set up the collision protection with predefined settings, perform the following steps:


Using Customized Settings

To set up the collision protection with customized settings, perform the following steps:

Setting the Collision Processing

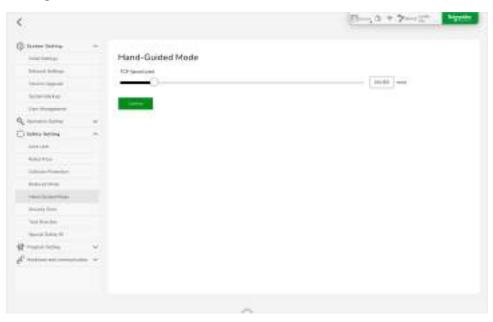

To set up the collision processing, perform the following steps:

Reduced Mode

Overview

To change the **Reduced Mode** values for **TCP Speed Limit**, **Arm Speed Limit**, **Momentum Limit**, and **Power Limit**, go to **Settings > Safety Setting > Reduced Mode**.

Setting Up Reduced Mode Values


To set up the **Reduced Mode** values, perform the following steps:

Step	Action
1	Go to Settings > Safety Setting > Reduced Mode.
2	Enter the Reduced Mode values either by moving the corresponding slider, or by clicking on the value and typing in the new value.
	NOTE: The lower the TCP Speed Limit, Arm Speed Limit, Momentum Limit, and Power Limit values are, the slower the Lexium Cobot Arm moves. Set the limit value according to your risk assessment.
	Result: The Reduced Mode values are set.

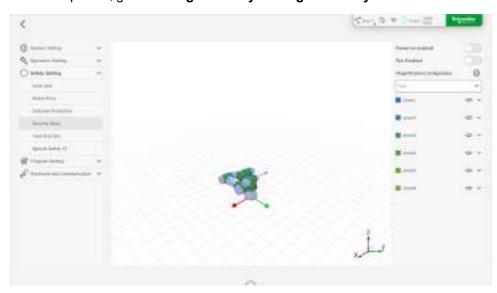
Hand-Guided Mode

Overview

To change the TCP speed limit in hand-guided mode, go to $\bf Setting > \bf Safety \, \bf Setting > \bf Hand-Guided \, \bf Mode.$

Setting Up the TCP Speed Limit for Hand-Guided Mode

To set up the TCP speed limit for hand-guided mode, perform the following steps:


Step	Action
1	Go to Settings > Safety Setting > Hand-Guided Mode.
2	Enter the TCP Speed Limit value either by moving the corresponding slider, or by clicking on the value and typing in the new value.
	NOTE: The lower the TCP Speed Limit is, the slower the Lexium Cobot Arm moves. Set the limit value according to your risk assessment.
	Result: The TCP speed limit for hand-guided mode is set.

Security Zone

Overview

To help prevent the Lexium Cobot Arm from colliding with another object during movement, you can define up to six planes. Exceeding one or more of the planes results in a configured response mode: **Stop**, **Protective Stop** or **Reduced Mode**. For further information, refer to *Functional Safety* in the *Lexium Cobot Arm Hardware Guide*.

To set the planes, go to Settings > Safety Setting > Security Zone.

Activation of Planes

You have two options to activate the planes:

Power on enabled

The planes are active as soon as the Lexium Cobot Arm is powered on and enabled. The Lexium Cobot Arm will operate according to the configuration in response mode as soon as it crosses the defined plane into the restricted area.

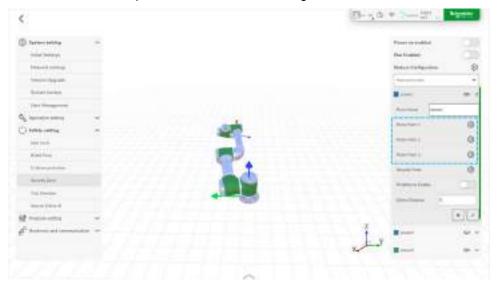
Run Enabled

The planes are activated as soon as the Lexium Cobot Arm executes a program.

NOTE: The planes are not active during hand-guiding and **Manual Operation**, if **Run Enabled** is configured.

Response Mode

When one or more planes are exceeded, the Lexium Cobot Arm operates according to the configured response:


Response mode	Response action
Stop	 The program is stopped. The Lexium Cobot system stops the Lexium Cobot Arm motion and disables the Lexium Cobot Arm.
Protective Stop	 The Lexium Cobot Arm decelerates to zero and reports an error message. The program is paused. The program is resumed after you confirm the status (the Lexium Cobot Arm continues to move outside of the defined zone of operation).
Reduced Mode	 The Lexium Cobot Arm enters reduced mode and reports a message. For further information about the reduced mode, refer to Functional Safety in the Lexium Cobot Hardware Guide. To configure the reduced mode, refer to Reduced Mode, page 108. After the TCP is moved back to the zone of operation, the Lexium Cobot Arm movement exits the reduced mode.

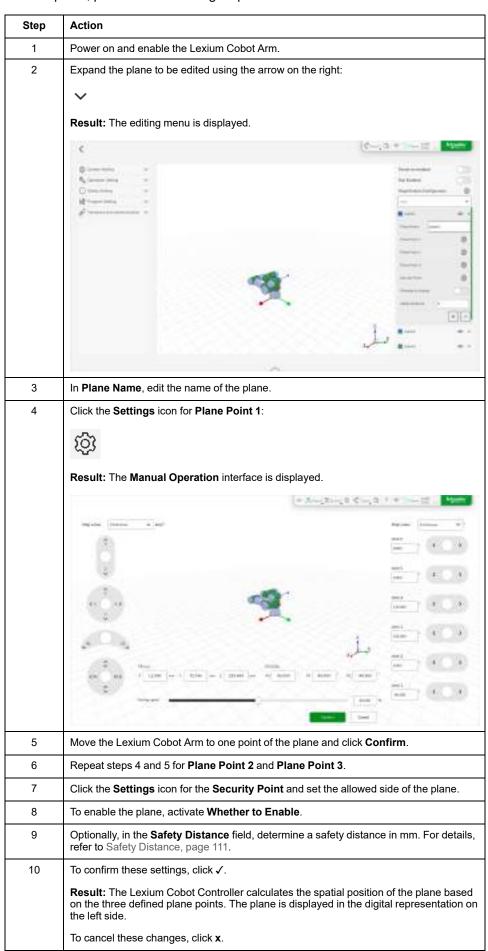
For further information, refer to chapter *Position Monitoring Safety Functions* in the *Lexium Cobot Hardware Guide*.

Plane Points

The plane points 1 to 3 are set to determine the planes.

NOTE: The three points must not be on a straight line.

Security Point


The security point defines which side of the space is allowed for the Lexium Cobot Arm and as such defines the zone of operation. This can be any point in space (except the plane itself).

Safety Distance

Safety Distance is the distance between the TCP of the Lexium Cobot Arm and the plane (unit: mm). When the safety distance is less than or equal to the user-specific value, the security zone is triggered, and the Lexium Cobot Arm reacts according to the configured response mode.

Setting a Plane

To set a plane, perform the following steps:

Tool Direction

Overview

In **Tool Direction**, you can restrict the angle at which the tool is pointing. The limit is defined by a cone that has a fixed orientation with respect to the base frame of the Lexium Cobot Arm. As the Lexium Cobot Arm moves in the working space, the tool direction is constrained to remain within the defined cone. The direction of the tool can be set to coincide with the Z-axis of the flange coordinate system or the tool coordinate system at the end of the Lexium Cobot Arm.

To set the tool direction, go to **Settings > Safety Setting > Tool Direction**.

Activation of Tool Direction

You have two options to activate the tool direction limit:

- Power on enabled (activation on start-up)
- Run Enabled (activation on operation)

Activation on start-up means that the tool direction limit is active as soon as the Lexium Cobot Arm is powered on and enabled.

Activation on operation means that the tool direction limit is activated as soon as the Lexium Cobot Arm executes the program or moves to the point by MoveJ/MoveL.

NOTE: The tool direction limit is not active in the operating modes hand-guiding and **Manual Operation**, if activation on operation is configured.

Safety Distance

Safety Distance represents the angle between the tool orientation and the cone boundary (unit: degree). When the safety distance is less than or equal to the user-specific value, a **Warning** message is displayed.

Limit Direction

There are two methods to set the limit direction:

- · Typing in the parameters for the limit direction manually, or
- · Setting the parameters for the limit direction by teaching it

If you enter the parameters manually, the cone centerline can be defined by the three angles RX, RY, and RZ.

If you set the limit direction by teaching, the following three points are required:

Datum Point

This is the cone apex.

Central Pivot Point

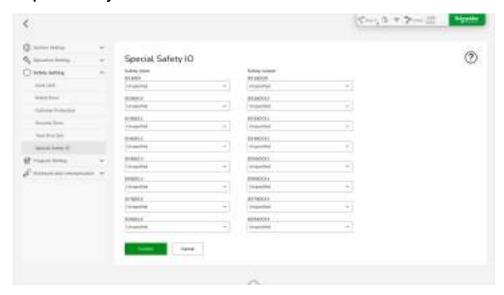
The line between the **Central Pivot Point** and the **Datum Point** is the centerline of the cone.

Boundary Point

The line between the **Boundary Point** and the **Datum Point** defines the cone the tool must not exceed.

Setting the Tool Direction

Step	Action
1	From Settings > Safety Setting > Tool Direction > Select coordinate system, select the coordinate system to define the tool orientation. It corresponds either to the Z axis of the flange end (end flange center) or to a configured tool coordinate system (Settings > Operation Setting > TCP Settings).
2	Optionally, adjust the tool orientation setting the two angles in Tool Direction :
	X direction: The angle of the limited tool orientation around the X axis of the reference coordinate system.
	Z direction: The angle of the limited tool orientation around the Z axis of the reference coordinate system.
3	In Safety Distance , optionally determine a distance in degrees. For details, refer to Safety Distance, page 114.
4	In Limit Direction , set the cone centerline direction either manually by typing in the values for the three angles RX, RY, and RZ or by clicking Settings to set the parameters by teaching. For further information, refer to Limit Direction, page 114.
5	Click Confirm.
	Result: The tool orientation limit is configured.


Special Safety IO

Overview

The digital inputs and outputs of the Lexium Cobot Controllers can be configured as a **Special Safety IO** to control the safety-related functions and monitor the safety-related status of the Lexium Cobot. This **Special Safety IO** signal is a two-channel signal.

NOTE: Due to the limited number of digital I/O connections available for the Lexium Cobot Compact Controller, the number of safety-related inputs and outputs used simultaneously is restricted to two.

To set special safety-related inputs and outputs, go to **Settings > Safety Setting > Special Safety IO**.

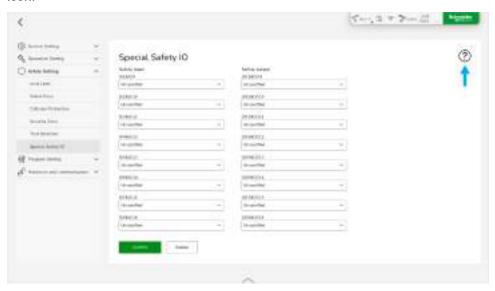
Setting the Special Safety IO

To set a **Special Safety IO**, perform the following steps:

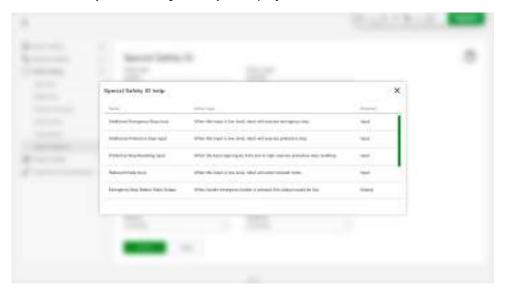
Step	Action
1	Disable and power off the Lexium Cobot Arm.
2	Go to Settings > Safety Setting > Special Safety IO.
3	At the safety-related input or output to be set, use the dropdown menu to select the required configuration. For further information on the different configurations, refer to Description of the Safety-Related Signals, page 116.
4	Click Confirm.
	Result: The Special Safety IO is set.

Description of the Safety-Related Signals

The following table presents the available safety-related signal configurations that you can select. For further information, refer to *Functional Safety* in the *Lexium Cobot Hardware Guide*.


Name	Action logic	Direction
Additional Emergency Stop Input	When the input signal is FALSE, the Lexium Cobot Arm performs an emergency stop.	Input
Additional Protective Stop Input	When the input signal is FALSE, the Lexium Cobot Arm performs a protective stop.	Input

Name	Action logic	Direction
Protective Stop Resetting Input	The protective stop is reset by the rising edge (FALSE > TRUE) of this signal.	Input
Reduced Mode Input	When the input signal is FALSE, the Lexium Cobot Arm switches to reduced mode.	Input
Three Position Enable Input	When the input signal is TRUE, the Lexium Cobot Arm can be moved in manual mode.	Input
Emergency Stop Button State Output	When the emergency stop pushbutton on the Control Stick is pressed, the output signal is FALSE.	Output
System Emergency Stop State Output	When the Lexium Cobot system is in emergency stop state, the output signal is FALSE.	Output
System Protective Stop State Output	When the Lexium Cobot system is in protective stop state, the output signal is FALSE.	Output
Robot Motion State Output	When the Lexium Cobot Arm is in motion, the output signal is FALSE.	Output
Robot Not-Stopping State Output	When an emergency stop or protective stop is triggered, causing the Lexium Cobot Arm to stop or to decelerate to a full stop, the output signal is TRUE.	Output
Robot Reduced Mode Output	When the Lexium Cobot Arm is in reduced mode, the output signal is FALSE.	Output
Robot Not in Reduced Mode	When the Lexium Cobot Arm is not in reduced mode, the output signal is FALSE.	Output


For further information on the safety-related signals, refer to *Functional Safety* in the *Lexium Cobot Hardware Guide*.

Viewing the Special Safety IO Help

To display a description of the safety-related signals in the software, click the ${\bf Help}$ icon.

Result: The Special Safety IO help is displayed.

Program Setting

Default Program

Overview

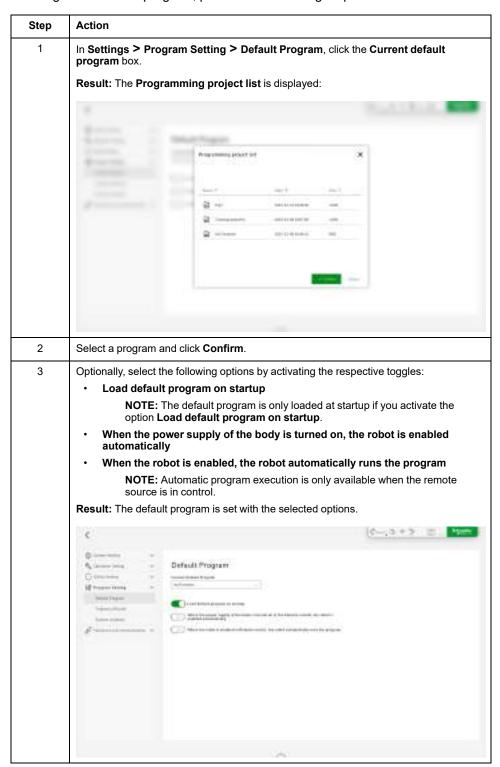
To designate a program as default program, go to **Settings > Program Setting > Default Program**.

The Lexium Cobot can automatically load the default program when the Lexium Cobot Arm is started up, if you activate the toggle **Load default program on startup**.

This way, the program to be executed through EcoStruxure Cobot Expert at startup is already selected.

Once the Lexium Cobot Arm is enabled, you can run the default robot program by pressing the **Start** button on the Control Stick.

The following options are available:


NOTE: These options are only available when the control source is set to **Remote Control**, page 50.

- When powered on, the Lexium Cobot Arm is also enabled automatically.
- When the Lexium Cobot Arm is enabled, the default program is started.

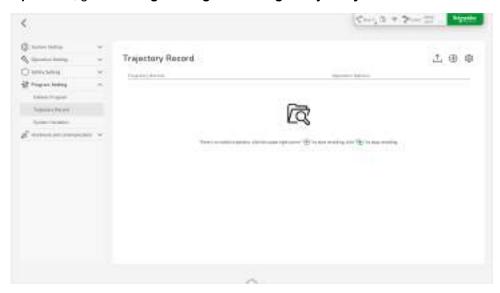
These options can be combined.

Designating a Default Program

To designate a default program, perform the following steps:

AWARNING

AUTOMATIC START OF MOVEMENT


- Ensure that the operator is aware that selecting the options When the
 power supply of the body is turned on, the robot is enabled
 automatically and When the robot is enabled, the robot automatically
 runs the program may cause the Lexium Cobot Arm to start the movement
 after it is powered on.
- Ensure that the operator is aware that selecting the option When the robot is enabled, the robot automatically runs the program may cause the Lexium Cobot Arm to start the movement after it is enabled.
- Ensure that the operator or a person near the Lexium Cobot Arm cannot be endangered or trapped by powering on or enabling the Lexium Cobot Arm with the options described in the preceding statements.
- Ensure that a risk assessment is conducted and respected according to EN/ ISO 12100 during the design of your machine.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Trajectory Record

Overview

To record the trajectory of the Lexium Cobot Arm during hand-guiding and **Manual Operation**, go to **Settings > Program Setting > Trajectory Record**.

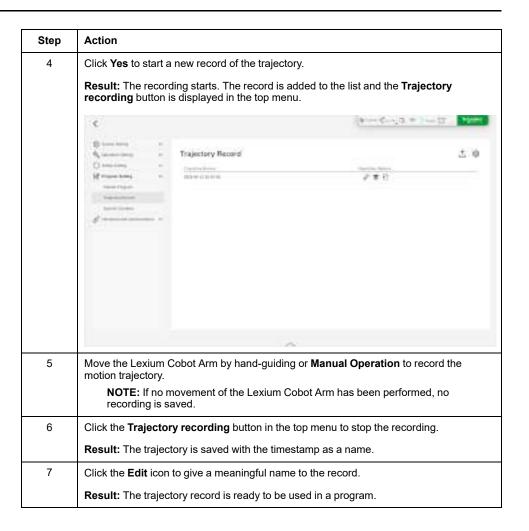
This trajectory file can be called during programming by the trajectory recording instruction to reproduce the recorded trajectory in the program.

NOTE: The trajectory recording function records only the path information and not the motion parameters.

In the settings, you can set the default speed and acceleration for this trajectory in the program. These parameters have no influence on the recording itself and can be adjusted later for specific program requirements. You can also set the sampling accuracy of position and pose.

Operation Options

You have the following operation options in the **Trajectory Record** pane:



- 1 Edit the name of the trajectory record
- 2 Delete the trajectory record
- **3 Export** the trajectory record
- 4 Import a trajectory record
- 5 Add a new recording
- **6 Settings** for configuring the trajectory recording parameters

Recording the Trajectory

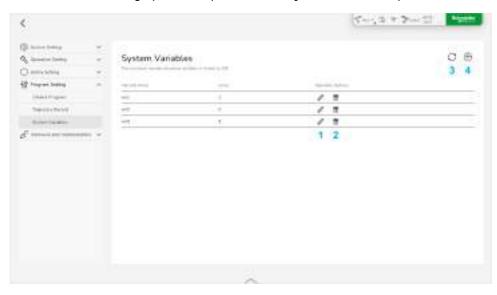
To record a trajectory, perform the following steps:

Step	Action		
1	In Settings > Program Setting > Trajectory Record, click the Settings icon. Result: The dialog box Edit trajectory motion is displayed.		
	Exist in section sharinan Section 1. Sectio		
2	Adjust the parameters according to your needs and click Confirm . NOTE: If the motion distance of the trajectory is short, the sampling deviation of Position and Pose may be as much as 0.1 mm or degree respectively.		
3	Click the Add icon. Result: The following confirmation prompt is displayed.		

System Variable

Overview

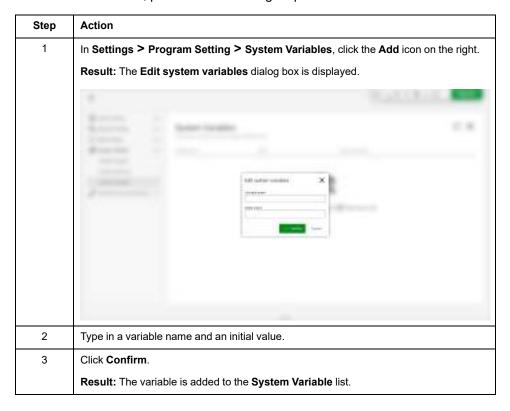
To add system variables, which can be called and modified in programs, go to **Settings > Program Setting > System Variables**


Another option to add variables is provided in the **Programming Control** interface. For further information, refer to the help in the instructions menu of the **Programming Control** interface, see Types of Instructions, page 186.

The variables are of numeric type only and are stored in the Lexium Cobot Controllers. The values of the variables are not modified or reset by starting and stopping the program or powering on and off the Lexium Cobot system.

NOTE: Up to 100 variables can be stored.

Operation Options


You have the following operation options in the **System Variables** pane:

- 1 Edit the name and the initial value of the variable
- 2 Delete the variable
- 3 Refresh the variable list
- 4 Add a new variable

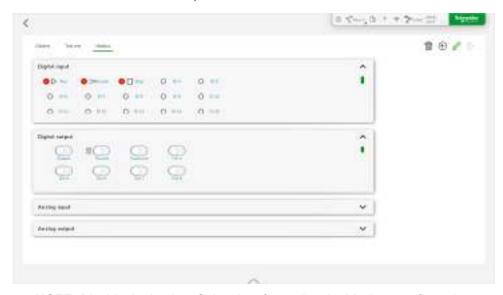
Creating a System Variable

To add a new variable, perform the following steps:

Hardware and Communication

Modbus Parameter Setting

Overview

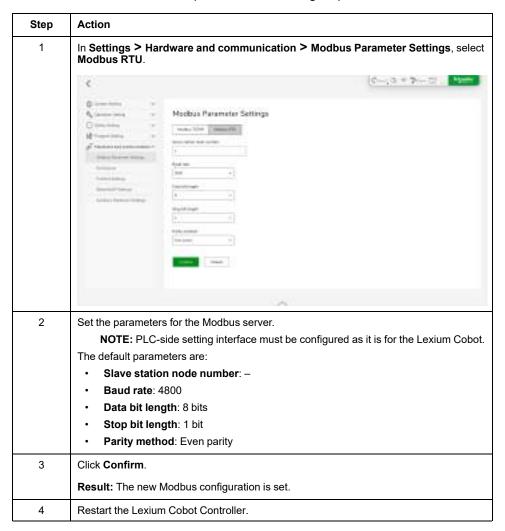

The Lexium Cobot supports Modbus TCP/IP and Modbus RTU communication modes.

To set the parameters for a connection with the Modbus server, go to **Settings > Hardware and communication > Modbus Parameter Settings**.

After the connection is established on client side, you can read the Lexium Cobot state and control the Lexium Cobot I/O signal based on the register address and the function code program in the Modbus Address Table, page 227.

To edit the Modbus information, click I/O Panel > Modbus in the feature bar.

NOTE: Disable the Lexium Cobot Arm for setting the Modbus configuration.


Setting the Modbus TCP/IP Mode

To set the Modbus TCP/IP mode, perform the following steps:

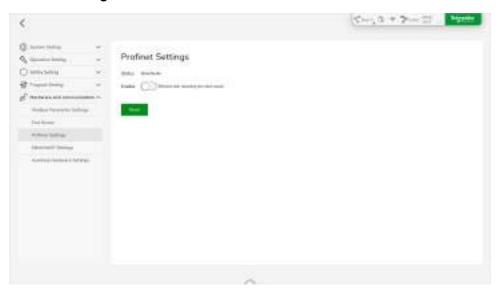
Step	Action
1	In Settings > Hardware and communication > Modbus Parameter Settings, select Modbus TCP/IP.
2	In Channel, edit the channel number according to your Modbus settings.
3	Click Confirm.
	Result: The new Modbus port is set.
4	Restart the Lexium Cobot Controller.

Setting the Modbus RTU Mode

To set the Modbus RTU mode, perform the following steps:

End Sensor

Overview


This feature is not supported.

Profinet Settings

Overview

Lexium Cobot supports the Profinet communication protocol and can be used as a Profinet server to connect to external devices.

To enable or disable Profinet, go to **Settings > Hardware and communication > Profinet Settings**.

The Profinet function can only interact with the external controller, with the Profinet I/O information being displayed in the **I/O Panel**.

For further information, refer to:

- Profinet, page 160
- Profinet Address Table, page 233

Enabling Profinet

To enable the Profinet communication protocol, perform the following steps:

Step	Action
1	Disable the Lexium Cobot Arm.
2	In Settings > Hardware and communication > Profinet Settings, click Enable.
3	Restart the Lexium Cobot Controller by using the Control Stick.
	Result: The Profinet communication protocol is enabled on the Lexium Cobot Controller.

EtherNet/IP Settings

Overview

Lexium Cobot supports the EtherNet/IP communication protocol and can be used as an Ethernet/IP server for connection with external devices.

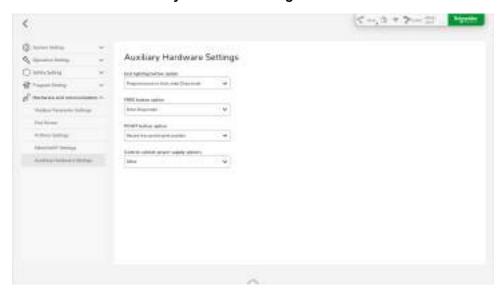
To set the EtherNet/IP configuration, go to **Settings > Hardware and communication > EtherNet/IP Settings**.

The EtherNet/IP function can be enabled or disabled (default) and can only interact with the external controller for Ethernet/IP communication when enabled. The EtherNet/IP I/O information is displayed in the IO interface.

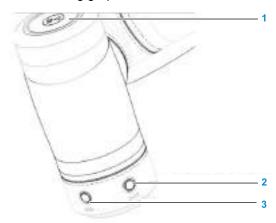
For further information refer to:

- Ethernet/IP, page 165
- Ethernet/IP Address Table, page 237

Enabling EtherNet/IP


To enable the EtherNet/IP communication protocol, perform the following steps:

Step	Action
1	Disable the Lexium Cobot Arm.
2	In Settings > Hardware and communication > EtherNet/IP Settings, click Enable.
3	Restart the Lexium Cobot Controller by using the Control Stick.
	Result: The EtherNet/IP communication protocol is enabled on the Lexium Cobot Controller.


Auxiliary Hardware Settings

Overview

To configure the functions of the three buttons at the end of the Lexium Cobot Arm (**Play/pause** button, **FREE** button, **POINT** button) and the mains voltage of the Lexium Cobot Controller power supply, go to **Settings > Hardware and communication > Auxiliary Hardware Settings**.

The following graphic shows where the three buttons are located.

- 1 Play/pause button
- 2 POINT button
- 3 FREE button

For further information on the buttons, refer to Lexium Cobot Arm Tool Flange Details in the Lexium Cobot Hardware Guide.

Configuration Options

To set a function for one of the buttons or the Lexium Cobot Controller power supply, select the function from the dropdown list.

The following options are available.

End lighting button option for the play/pause button:

- Prohibited
- Program pause or start

- Enter Drag mode (hand-guided mode)
- Program pause or start, enter Drag mode (hand-guided mode)

FREE button option:

- Prohibited
- Enter Drag mode (hand-guided mode)

POINT button option:

- Prohibited
- Record the current point position

Control cabinet power supply option (only available for the Lexium Cobot Cabinet Controller):

- Other (represents 110 Vac)
- 220VAC (represents 220 Vac)

Terminal IO

Overview

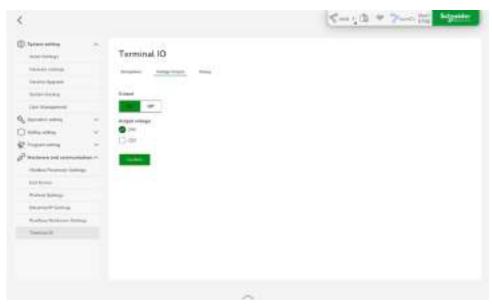
The Lexium Cobot Arm is equipped with a tool flange IO interface (TIO) that provides the following inputs and outputs:

- Two digital inputs (TDI)
- Two digital outputs (TDO)
- Two analog inputs (TAI)

The two digital outputs can be multiplexed as high-speed RS485 channels and the analog inputs can be multiplexed as low-speed RS485 channels.

The configurable voltage output (12V/24V/0V) supports the power supply of the external expansion devices.

To set the configuration of the TIO, go to **Settings > Hardware and Communication > Terminal IO**.



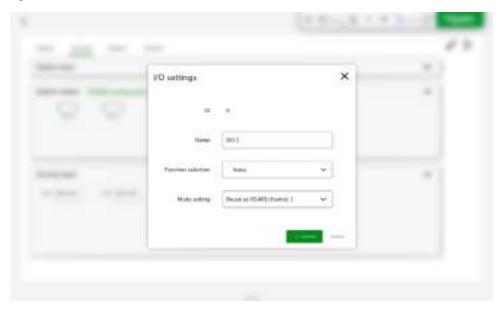
NOTE:

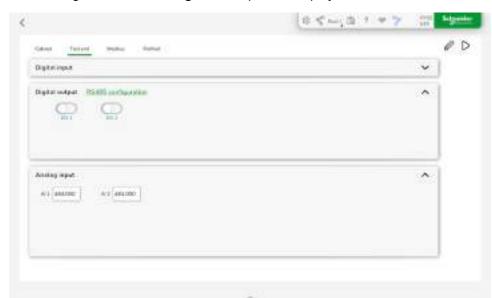
- The Terminal IO section is only displayed if the Lexium Cobot Arm is connected.
- When using the Lexium Cobot Arm for the first time, you must power on the Lexium Cobot Arm to activate the section.
- After restarting the Lexium Cobot Controller, it may be necessary to power on the Lexium Cobot Arm to display this section.

Voltage Output

In the **Voltage Output** tab, you can switch the output voltage on or off and select **12V** or **24V** as output.

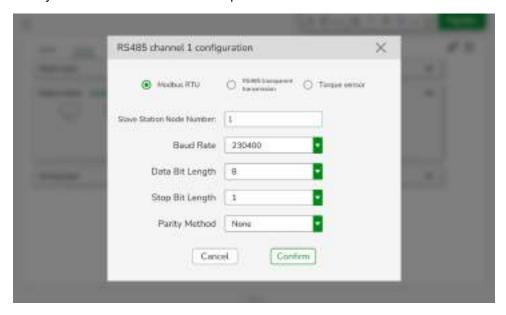
NOTE: Select **12V** or **24V** to use the tool flange inputs and outputs.


Configuring the Voltage Output


To set the voltage output at the **Terminal IO**, perform the following steps:

Step	Action
1	Click Settings > Hardware and Communication > Terminal IO.
2	Select the Voltage Output tab.
3	Select whether to enable or to disable the output.
4	If enabled, select the output voltage.
5	Click Confirm.
	Result: The voltage output is configured.

RS485 Configuration


The two-way RS485 channel can be multiplexed as RS485 channel in the corresponding pin before configuration. Using RS485 channel 1 as an example, the TDO pin is multiplexed as RS485 channel 1, as presented in the following figure.

After setting, the RS485 configuration option is displayed.

Click **RS485 configuration** to display the RS485 channel configuration options. Here you can set the communication parameters.

RS485 Channel Configuration

When using the RS485 channel, the mode needs to be configured. There are three modes available:

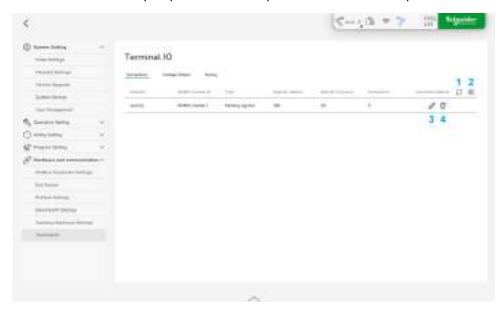
- Modbus RTU
 - To support external devices.
- RS485 transparent transmission
 Not supported.
- Torque sensor

To connect the torque sensor of designated model.

RS485 Channel Communication Parameter Configuration

Set the serial communication parameters of the RS485 channel:

• Baud rate (maximum 2250000 supported)


- Data bit length (8/9 supported)
- Stop bit length (1/2 supported)
- · Parity method (odd parity/even parity/none)

When the channel mode is set as Modbus RTU, the Modbus **Slave station node number** needs to be additionally configured.

NOTE: A detected error in the configuration of the communication parameters results in the TIO not being able to communicate with the external equipment.

Semaphore

EcoStruxure Cobot Expert provides a semaphore function for user queries.

- 1 Refresh the semaphore values
- 2 Add a semaphore
- 3 Edit a semaphore
- 4 Delete a semaphore

To add a semaphore, click the Add icon.

Define the states to be queried in advance and capture the state value through subsequent refreshing and querying operations.

Semaphore Parameters:

· Identifier

Unique identifier of the semaphore (Unicode and special characters are not supported). Used for subsequent refreshing, acquisition, and deletion operations.

RS485 channel ID

Used for designating the TIO RS485 channel of the semaphore source (RS485 channel 1 or RS485 channel 2)

Semaphore type

Data type of the semaphore. This parameter corresponds to the following Modbus function codes:

- 01 means coil register
- 02 means discrete input
- 03 means input register
- 04 means holding register

Others are not supported.

Register address

Refers to the Modbus register address corresponding to the semaphore. This address is used for accessing the register designated by the Modbus RTU server in combination with the RS485 channel configuration and the semaphore type.

NOTE: The semaphore must be defined in a situation where the related TIO pin has been multiplexed as RS485 channel and in the Modbus RTU mode. Changing the mode or the pin multiplexing will cause the semaphore configuration loss.

Semaphore Refreshing and Querying

Once a semaphore is defined, the monitoring or debugging can be performed through the debugging interface in the **Debug** tab (in **Settings** > **Hardware and Communication** > **Terminal IO**) or directly in the job program. The semaphore can be refreshed and queried through both methods.

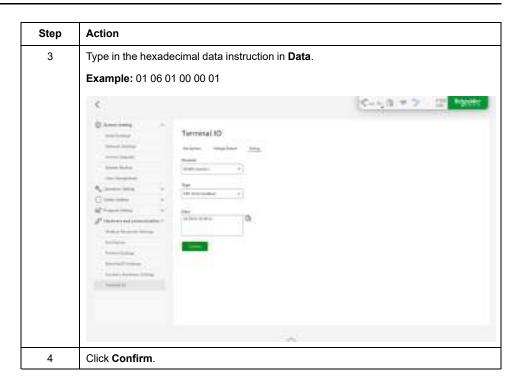
The refresh operation can trigger the data interaction between the Lexium Cobot Controllers and the TIO devices during operation. Since the interaction between the Lexium Cobot Controllers and the TIO device is asynchronous with the refresh instruction, it is necessary to wait for a certain time (100 ms) to capture the value after refreshing. In addition, the refreshing frequency can be specified. If the frequency is 0, it is treated as a one-time refresh, and if the frequency is greater than 0, it is combined with the communication bandwidth to fulfill the refresh requirement as much as possible.

To refresh the semaphore value, click the **Refresh** icon in the **Semaphore** tab (in **Settings** > **Hardware and Communication** > **Terminal IO**).

Deleting a Semaphore

To delete a semaphore, perform the following steps:

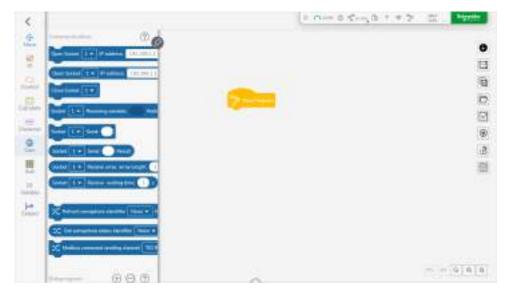
Step	Action
1	In Settings > Hardware and Communication > Terminal IO, click on the Semaphore tab, select the Delete icon in the row of the semaphore to be deleted.
	Result: The confirmation prompt is displayed.
2	Click Confirm.
	Result: The semaphore is removed.


Immediate Instructions

The immediate instruction designates the immediate control command of the Lexium Cobot Controllers via the TIO external device, including the device position control, the speed control and the force control.

Sending an Immediate Instruction

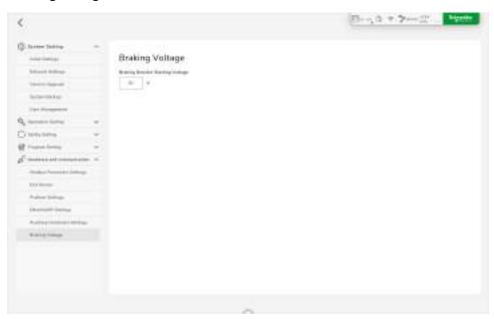
To send an immediate instruction, perform the following steps:


Step	Action
1	In Settings > Hardware and Communication > Terminal IO, click on the Debug tab.
2	Select the channel and the type.

TIO Support in the Job Program

The job program supports refreshing and querying of the semaphores by appropriate instructions. The definition, modification and deletion of the semaphores can be added manually in the debugging interface. In addition, the instruction is given to send the immediate command to control the TIO device immediately.

The related commands are shown in the following graphic.



Braking Voltage

Overview

The Lexium Cobot Compact Controller provides a configurable braking resistor starting voltage setting to avoid overvoltage that may occur during deceleration and braking movement of the Lexium Cobot Arm.

To configure this setting, go to **Settings > Hardware and communication > Braking Voltage**.

Configuration Settings

Configuration of the braking resistor starting voltage according to the connected power supply:

Power supply	Input voltage	Braking resistor starting voltage
Modicon ABLU 48 V dc (commercial reference: ABLU3A48200)	48 V dc	51 V
48 V dc lithium battery	54.6 V dc	58 V

AWARNING

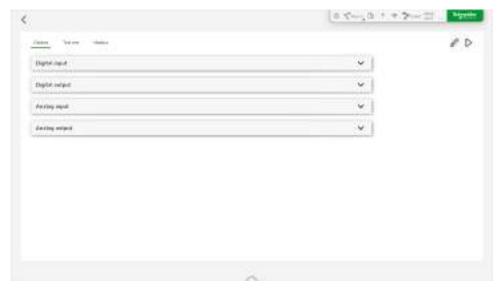
UNINTENDED EQUIPMENT OPERATION

Ensure that the braking resistor starting voltage is correctly configured according to the input voltage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Setting the Braking Voltage

Step	Action
1	Disable and power off the Lexium Cobot Arm.
2	Click Settings > Hardware and communication > Braking Voltage.
3	In Braking Resistor Starting Voltage, set the value.


I/O Panel

What's in This Chapter

Function Settings	143
Cabinet Tab	
Tool End Tab	
Modbus Tab	155
Profinet	160
EtherNet/IP	165
Adding Extended I/O	170

Overview

To view and set the electrical inputs and outputs of the Lexium Cobot Arm system, select **I/O Panel** in the feature bar.

NOTE: Disable the Lexium Cobot Arm for editing the inputs and outputs.

The **I/O Panel** consists by default of the following sections:

- Cabinet
- Tool end
- Modbus

Optionally, the sections **Profinet** and **EtherNet/IP** can be activated by enabling them in the settings. For further information, refer to:

- · Profinet Settings, page 131
- EtherNet/IP Settings, page 132

Function Settings

Supported Digital Input Functions

When you edit a digital input (DI), you can set the function of the input in the **I/O settings** dialog box.

In this dialog box, you can select the following functions from the **Function selection** dropdown list.

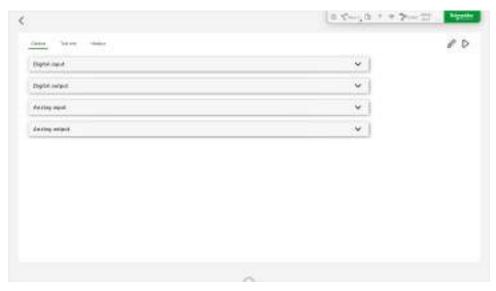
Function name	Triggering mode	
None	None	
Start program	Rising edge signal (FALSE>TRUE)	
Pause program	Rising edge signal (FALSE>TRUE)	
Resume program	Rising edge signal (FALSE>TRUE)	
Stop program	Rising edge signal (FALSE>TRUE)	
Turn on robot power	Rising edge signal (FALSE>TRUE)	
Power off the robot	Rising edge signal (FALSE>TRUE)	
Enable robot	Rising edge signal (FALSE>TRUE)	
Disable robot	Rising edge signal (FALSE>TRUE)	
Level 1 Override Mode (2)	FALSE signal	
Protective Stop	FALSE signal	
Back to initial position (=Home)	TRUE signal	
Level 2 Override Mode (2)	FALSE signal	
Clear fault (1)	Rising edge signal (FALSE>TRUE)	
Free-drive mode On (hand guided)	Rising edge signal (FALSE>TRUE)	
Free-drive mode Off (not hand guided)	Rising edge signal (FALSE>TRUE)	

¹ Only the collision message is cleared, the other messages are not cleared.

² The Level 2 Override Mode parameter must be less than the Level 1 Override Mode parameter. Set the reduction ratio in Settings > Safety Setting > Security Zone > Reduce Configuration. This only affects the speed of the movement.

Supported Digital Output Functions

When you edit a digital output (DO), you can set the function of the output in the **I**/ **O settings** dialog box.


In this dialog box, you can select the following functions from the ${\bf Function}$ selection dropdown list.

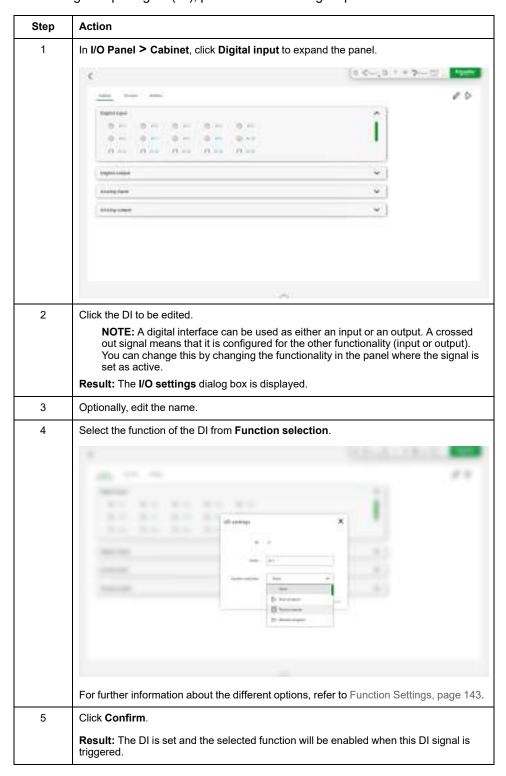
	B
State	Description
None	No function is assigned.
Idle	The program is stopped completely or there is no loaded program (no running or paused program).
Program suspended	The program is paused.
Program running	The program is being executed (not stopped nor paused).
Error	The Lexium Cobot detects an error. For example, position deviation.
Powered on	The Lexium Cobot Arm is powered on but not enabled.
Enabled	The Lexium Cobot Arm is powered on and enabled.
Moving	Triggered when the Lexium Cobot Arm is in motion (program operation, manual operation, secondary development control movement, and so on).
Static	Triggered when the Lexium Cobot Arm is not moving.
Started up	The Lexium Cobot Controller is powered on and started up. Independent of the state of the Lexium Cobot Arm.
Emergency Stop Status	When the system is in emergency stop state, the output signal is TRUE.
Level 1 Override Status	The Lexium Cobot is in Level 1 Override Mode . In this case, the output is TRUE.
Level 2 Override Status	The Lexium Cobot is in Level 2 Override Mode . In this case, the output is TRUE.
Safety Stop Status	Indicates whether the system is in a protective stop. When the protective stop is triggered, the output is TRUE.
Security Position	Triggered when the Lexium Cobot Arm is in the Home Pose . For further information, refer to Robot Pose, page 102.
Drag-and-drop Status	Indicates the status of the hand-guided mode. When the hand-guided mode is active, the output is TRUE.
Collision Status	Indicates a detected collision. When a collision is detected, the output is TRUE.

Cabinet Tab

Overview

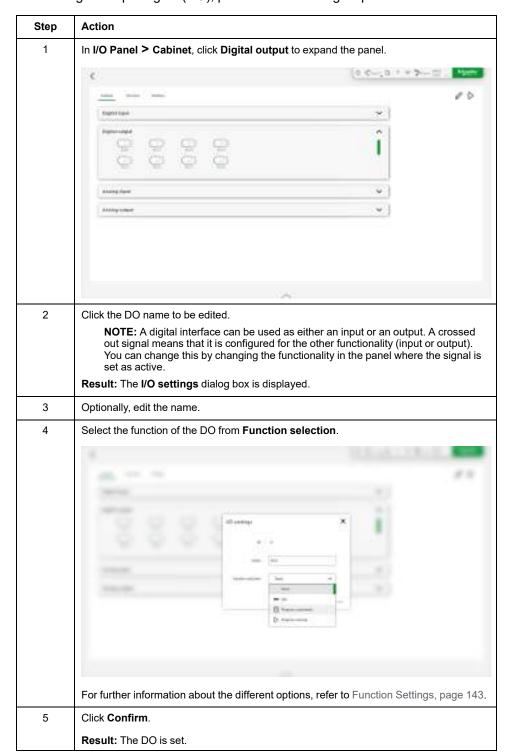
To set the inputs and outputs of the Lexium Cobot Controllers, go to **I/O Panel > Cabinet**.

- The Lexium Cobot Cabinet Controller is equipped with 16 digital inputs, 16 digital outputs, and two analog interfaces which can be used as inputs or outputs.
- The Lexium Cobot Compact Controller is equipped with 5 digital interfaces which can be used as inputs or outputs.


When EcoStruxure Cobot Expert is connected to the Lexium Cobot Controller, the **I/O Panel** displays the physical signal in the Lexium Cobot Controller.

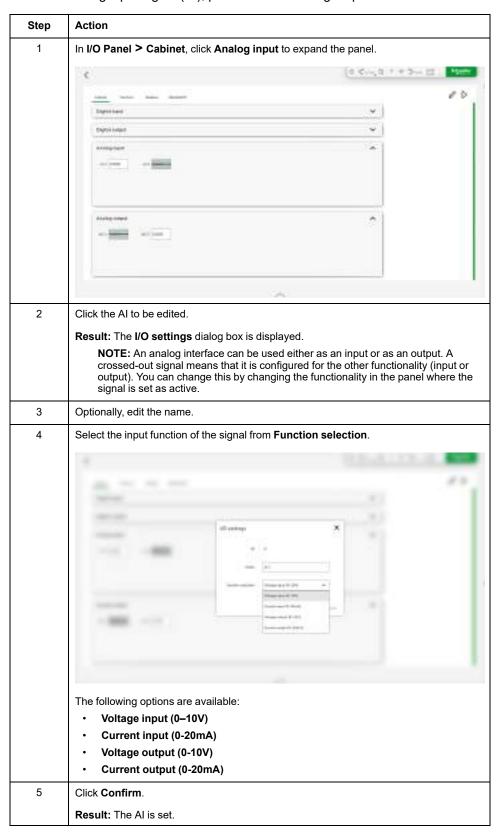
The Cabinet tab consists of four sections:

- · Digital input
- Digital output
- Analog input (only available for the Lexium Cobot Cabinet Controller)
- Analog output (only available for the Lexium Cobot Cabinet Controller)
 NOTE: Disable the Lexium Cobot Arm for editing the I/O.


Setting a Digital Input Signal

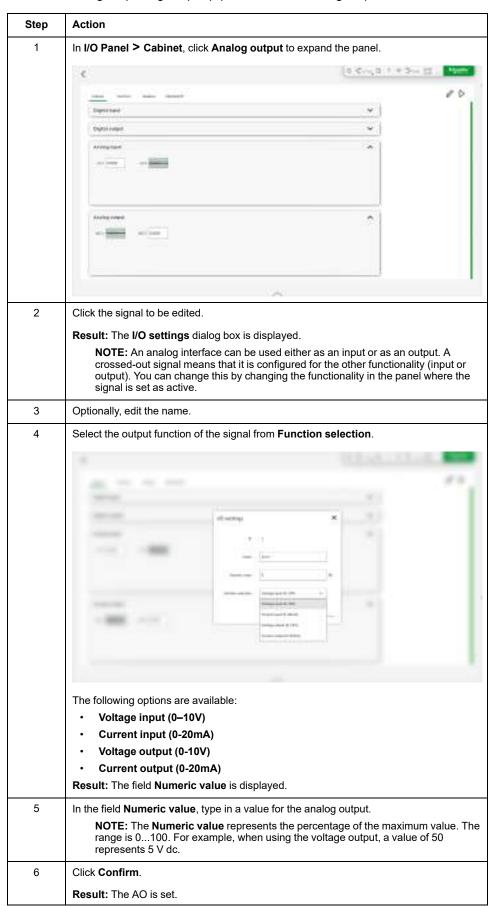
To set a digital input signal (DI), perform the following steps:

Setting a Digital Output Signal

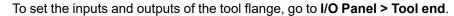

To set a digital output signal (DO), perform the following steps:

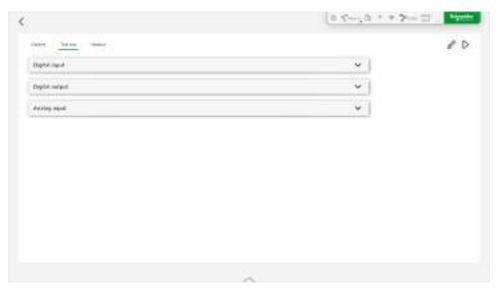
Setting an Analog Input Signal

NOTE: Only available for the Lexium Cobot Cabinet Controller.


To set an analog input signal (AI), perform the following steps:

Setting an Analog Output Signal


NOTE: Only available for the Lexium Cobot Cabinet Controller.

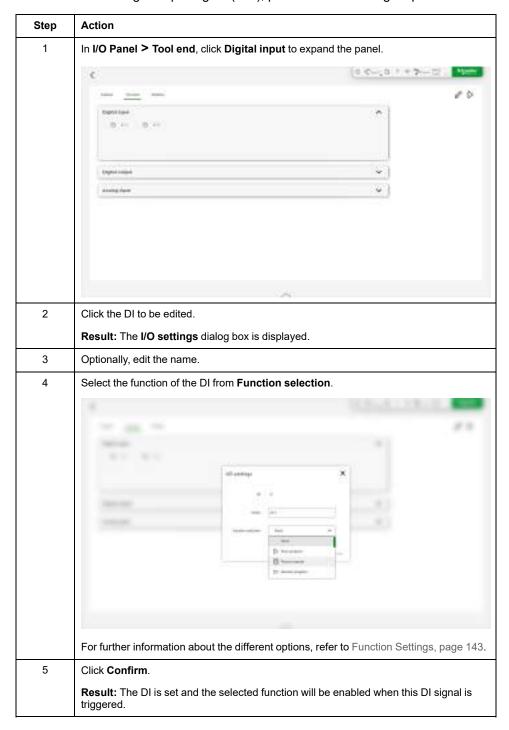

To set an analog output signal (AO), perform the following steps:

Tool End Tab

Overview

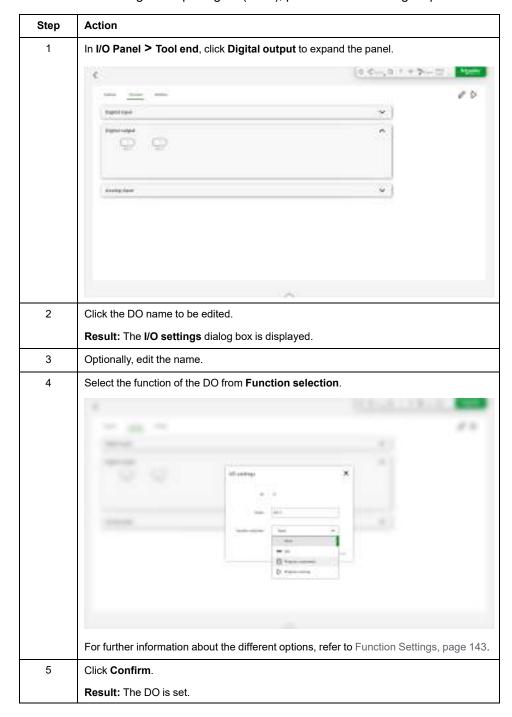
The **Tool end** tab consists of three sections:

- **Digital input** for the TDI
- Digital output for the TDO
- Analog input for the TAI


The TIO of the Lexium Cobot Arm is provided with two digital inputs, two digital outputs and two analog voltage inputs, with an input range of $0\dots 10\ V$ dc.

NOTE: Disable the Lexium Cobot Arm for editing the I/O.

For the advanced configuration method, refer to Terminal I/O, page 135.


Setting a Tool End Digital Input Signal

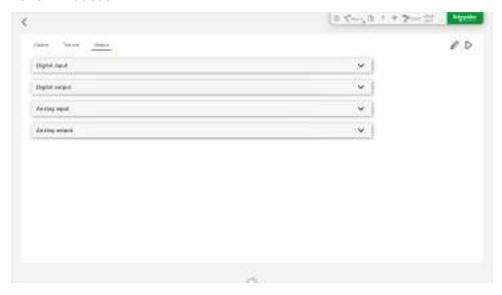
To set a **Tool end** digital input signal (TDI), perform the following steps:

Setting a Tool End Digital Output Signal

To set a **Tool end** digital output signal (TDO), perform the following steps:

Renaming a Tool End Analog Input Signal

To rename a **Tool end** analog input signal (TAI), perform the following steps:



Modbus Tab

Overview

The Lexium Cobot Controllers support the Modbus communication protocol and can be used as a Modbus communication server for interaction with external devices.

To set the Modbus inputs and outputs of the Lexium Cobot Controller, go to **I/O Panel > Modbus**.

The Modbus tab consists of four sections:

- Digital input
- Digital output
- · Analog input
- Analog output

I/O signals in the **Modbus** tab are the I/O data that is accessed by the Lexium Cobot and external devices via the Modbus communication protocol.

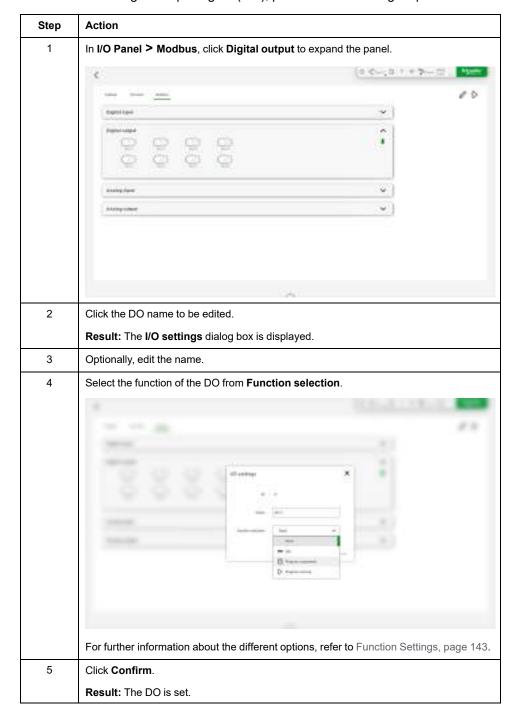
The Lexium Cobot Controllers support the following maximum number of inputs and outputs:

- 128 digital inputs and 128 digital outputs
- · 16 integer analog inputs and 16 integer analog outputs
- 16 signed analog inputs and 16 signed analog outputs
- 32 analog inputs with floating point numbers and 32 analog outputs with floating point numbers

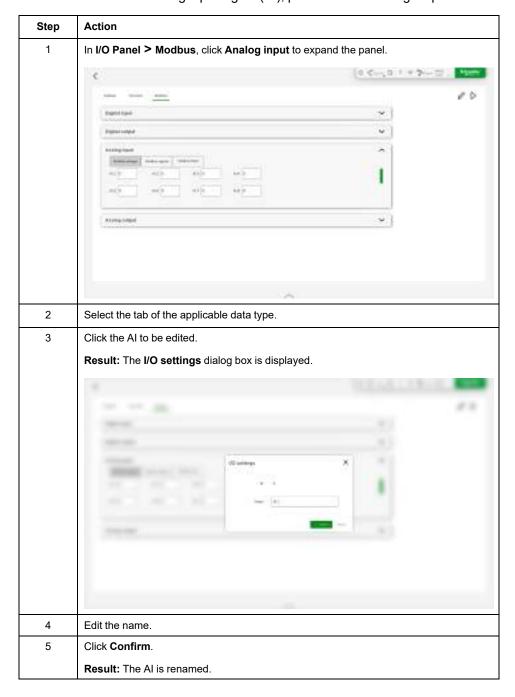
For the definition of the Modbus register addresses, refer to the Modbus Address Table, page 227.

NOTE: Disable the Lexium Cobot Arm for editing the I/O.

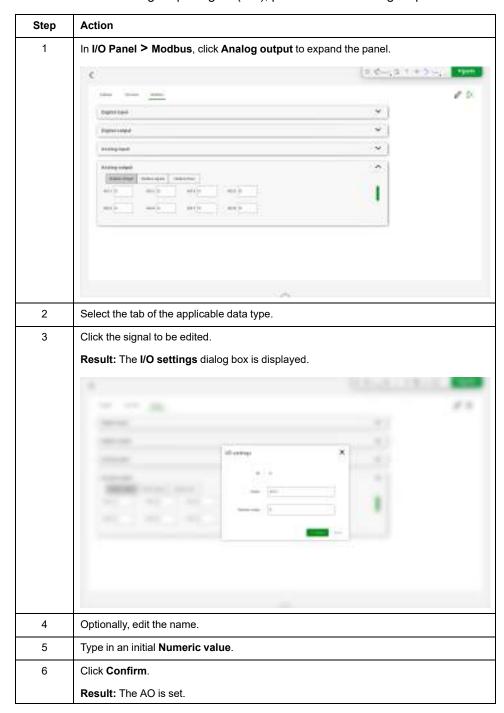
For the advanced configuration method, refer to Terminal I/O, page 135.


Setting a Modbus Digital Input Signal

To set a Modbus digital input signal (DI), perform the following steps:


Setting a Modbus Digital Output Signal

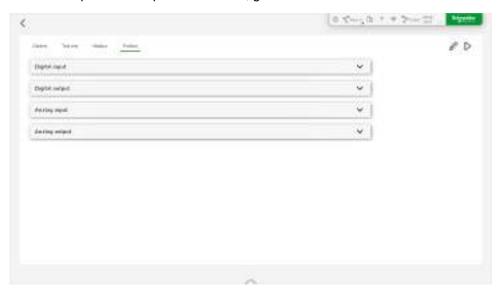
To set a Modbus digital output signal (DO), perform the following steps:


Renaming a Modbus Analog Input Signal

To rename a Modbus analog input signal (AI), perform the following steps:

Setting a Modbus Analog Output Signal

To set a Modbus analog output signal (AO), perform the following steps:


Profinet

Overview

The Lexium Cobot Controllers support the Profinet communication protocol and can be used as a Profinet I/O device server for communication with external devices.

To display the Profinet section, you have to enable Profinet in the settings. For further information, refer to Profinet Settings, page 131.

To set the inputs and outputs for Profinet, go to **I/O Panel > Profinet**.

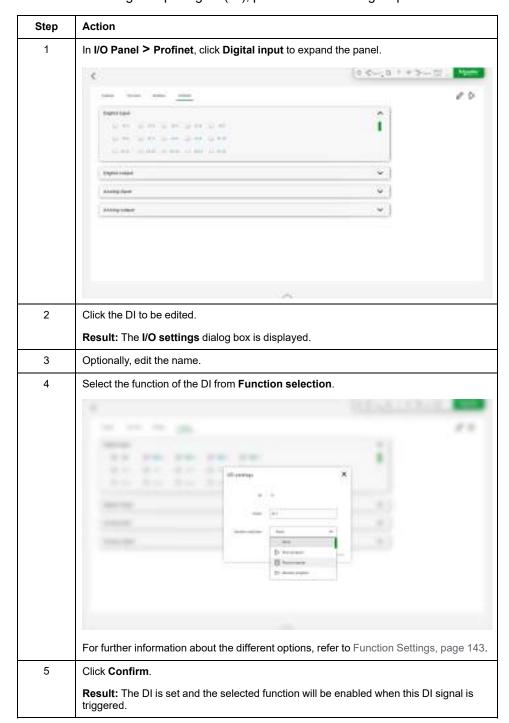
The **Profinet** tab consists of four sections:

- Digital input
- Digital output
- Analog input
- Analog output

I/O signals in the **Profinet** tab are the I/O data that is accessed by the Lexium Cobot and external devices via the Profinet communication protocol.

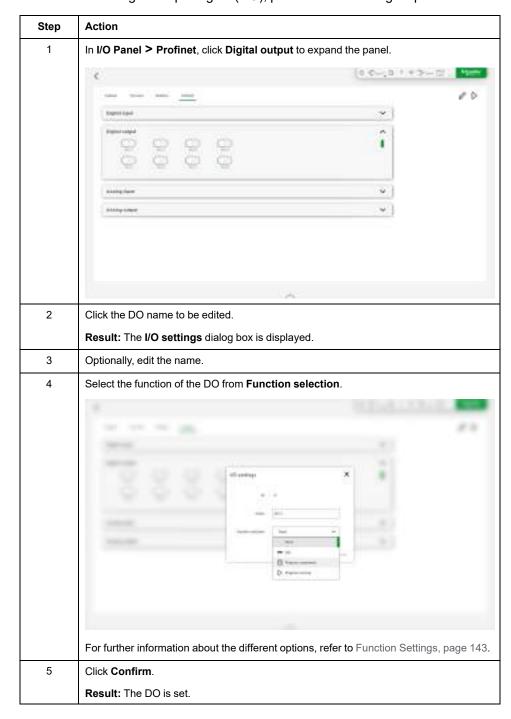
The Lexium Cobot Controllers support the following maximum number of inputs and outputs:

- 64 digital inputs and 64 digital outputs
- 32 signed number analog inputs and 32 signed number analog outputs
- 32 floating-point number analog inputs and 32 floating-point number analog outputs

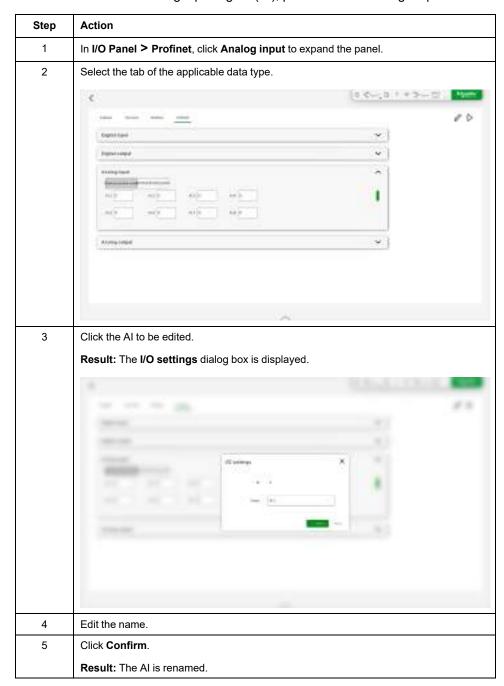

For the definition of the Profinet addresses, refer to the Profinet Address Table, page 233.

For GSDML-XML form device description files, contact your local Schneider Electric representative.

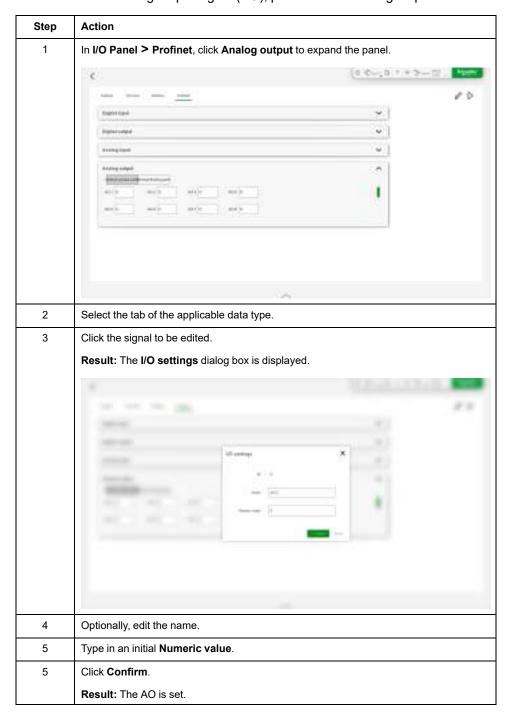
NOTE: Disable the Lexium Cobot Arm for editing the I/O.


Setting a Profinet Digital Input Signal

To set a Profinet digital input signal (DI), perform the following steps:


Setting a Profinet Digital Output Signal

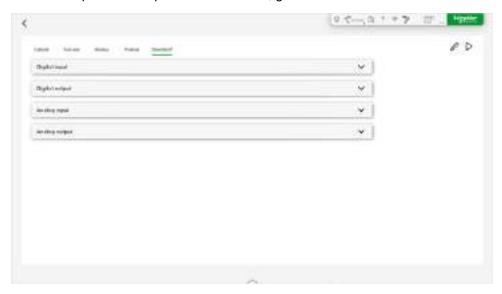
To set a Profinet digital output signal (DO), perform the following steps:


Renaming a Profinet Analog Input Signal

To rename a Profinet analog input signal (AI), perform the following steps:

Setting a Profinet Analog Output Signal

To set a Profinet analog output signal (AO), perform the following steps:


EtherNet/IP

Overview

The Lexium Cobot Controllers support the Ethernet/IP communication protocol and can be used as an Ethernet/IP communication adapter to interact with external devices.

To display the EtherNet/IP section, enable Ethernet/IP in the settings. For further information, refer to EtherNet/IP Settings, page 132.

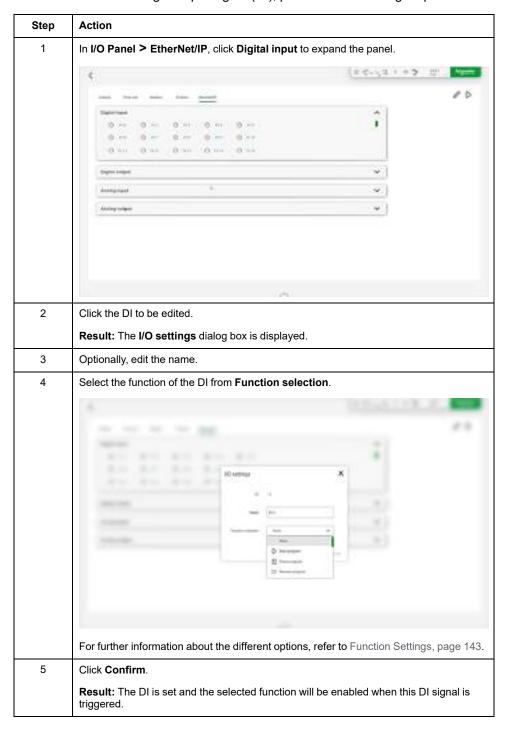
To set the inputs and outputs for EtherNet/IP, go to I/O Panel > EtherNet/IP.

The **EtherNet/IP** tab consists of four sections:

- Digital input
- Digital output
- Analog input
- · Analog output

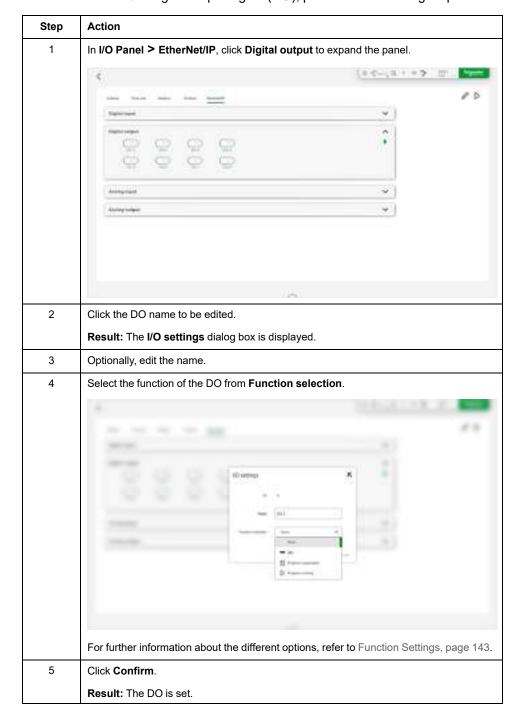
I/O signals in the **EtherNet/IP** tab are the I/O data that is accessed by the Lexium Cobot and external devices via the EtherNet/IP communication protocol.

The Lexium Cobot Controllers support the following maximum number of inputs and outputs:


- · 64 digital inputs and 64 digital outputs
- 24 signed number analog inputs and 24 signed number analog outputs
- 24 floating-point number analog inputs and 24 floating-point number analog outputs

For the definition of the EtherNet/IP register addresses, refer to the EtherNet/IP Address Table, page 237.

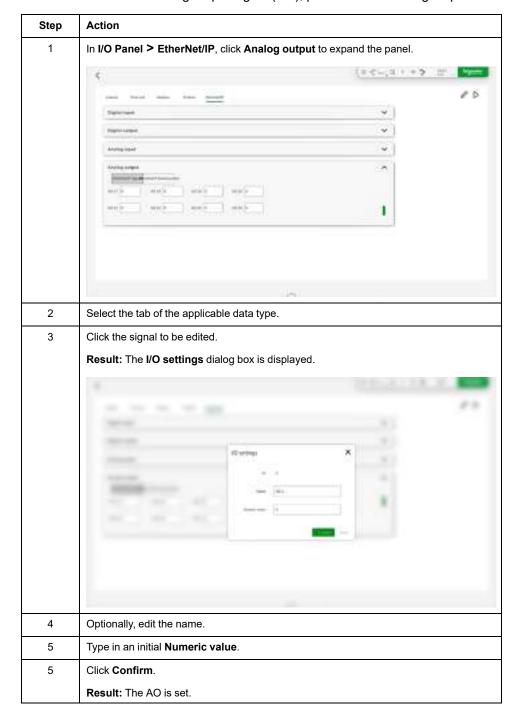
NOTE: Disable the Lexium Cobot Arm for editing the I/O.


Setting an EtherNet/IP Digital Input Signal

To set an EtherNet/IP digital input signal (DI), perform the following steps:

Setting an EtherNet/IP Digital Output Signal

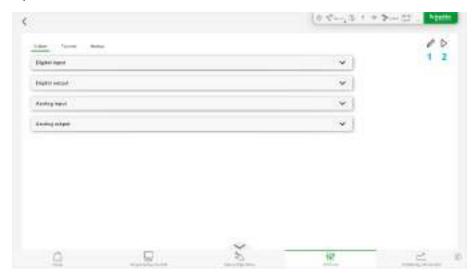
To set an EtherNet/IP digital output signal (DO), perform the following steps:


Renaming an EtherNet/IP Analog Input Signal

To rename an EtherNet/IP analog input signal (AI), perform the following steps:

Setting an EtherNet/IP Analog Output Signal

To set an EtherNet/IP analog output signal (AO), perform the following steps:


Adding Extended I/O

Extended I/O

The **I/O Panel** has a dynamic I/O configuration function that allows the Lexium Cobot Controllers to act as a client of Modbus communication.

This function is located in **I/O Panel > Cabinet**, in the upper right corner of the and it has two modes:

· Operation mode

- 1 Edit for switching to the editing mode
- 2 Running indicates the active operating mode
- · Edit mode

- 1 Delete for deleting a dynamic I/O tab
- 2 Add a new dynamic I/O tab
- 3 Edit an existing dynamic I/O tab
- 4 Run for switching to operating mode

When switched to the editing state:

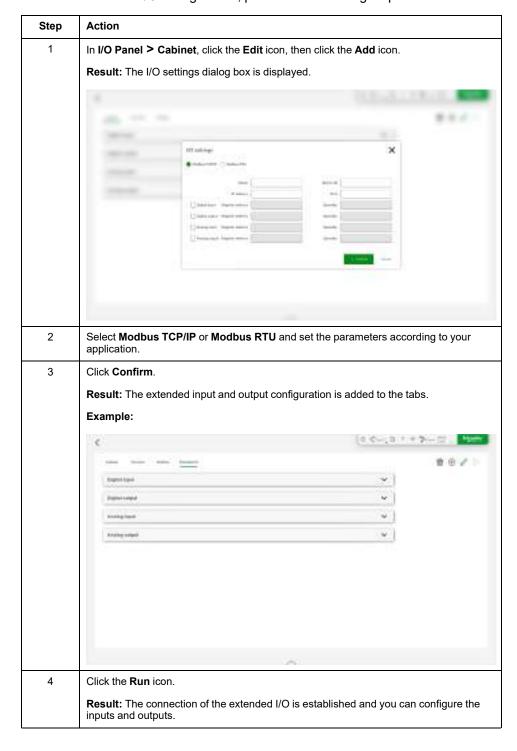
Click the Add icon to configure the dynamic I/O.

The configuration consists of Modbus-TCP and Modbus-RTU. The Modbus setting is connected with the communication interface of the Lexium Cobot

Controller. The TCP/IP mode is connected through Ethernet, while the RTU mode is connected through the RS485 serial line interface.

NOTE:

- Disable and power off the Lexium Cobot Arm for configuring the extended I/O
- Maximum number of extended I/O:


32 for AIO

64 for DIO

Up to 8 modules are supported as an extension.

Adding an Extended I/O Configuration

To add an extended I/O configuration, perform the following steps:

Blockly Programming

What's in This Chapter

Programming Control Interface	172
Types of Instructions	186

Programming Control Interface

Overview

EcoStruxure Cobot Expert provides a visual programming interface which contains programming blocks and assisting dialog boxes to develop the program code for the Lexium Cobot.

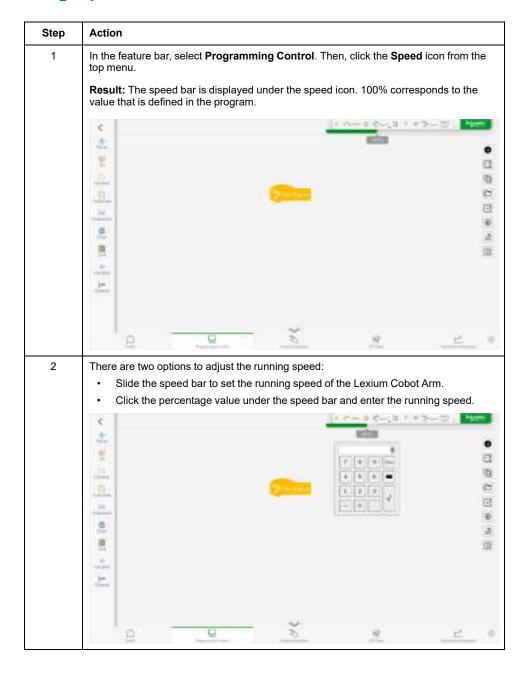
To open the **Programming Control** interface, select **Programming Control** in the feature bar.

- 1 Instructions menu
- 2 Editing area
- 3 Run the program
- 4 Speed setting of the program
- 5 New programming file
- 6 Save the programming file
- 7 Save as the programming file
- 8 Open a programming file
- 9 Advanced Operation

- 10 Debug mode
- 11 Lock the program
- 12 Variable Observation in the editing area
- 13 Undo the last action
- 14 Redo the last undone action
- 15 Zoom in the editing area
- 16 Reset view of the editing area
- 17 Zoom out the editing area

The header of the job program consists of the yellow **New Program** instruction block, which is placed in by default.

The following instructions, connected to the head, form the body of the job program. The Lexium Cobot Arm executes the program step by step from top to bottom.


NOTE: To edit the name of the program, click the instruction block.

Running a Program

Step	Action
1	Power on and enable the Lexium Cobot Arm.
2	In the feature bar, select Programming Control . Then, click the Run icon from the top menu.
	Result: The Lexium Cobot runs the program.

NOTE: When the program is running, the **Run** icon is replaced by the **Pause** icon for pausing the program and the **Stop** icon for stopping the program.

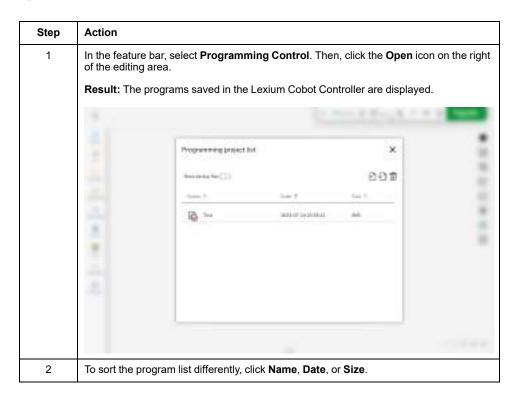
Adjusting the Running Speed

Creating a New Program

In the feature bar, select **Programming Control**. Then, click the **New** icon on the right of the editing area.

Result: The new program is created.

Renaming a Program



Saving a Program

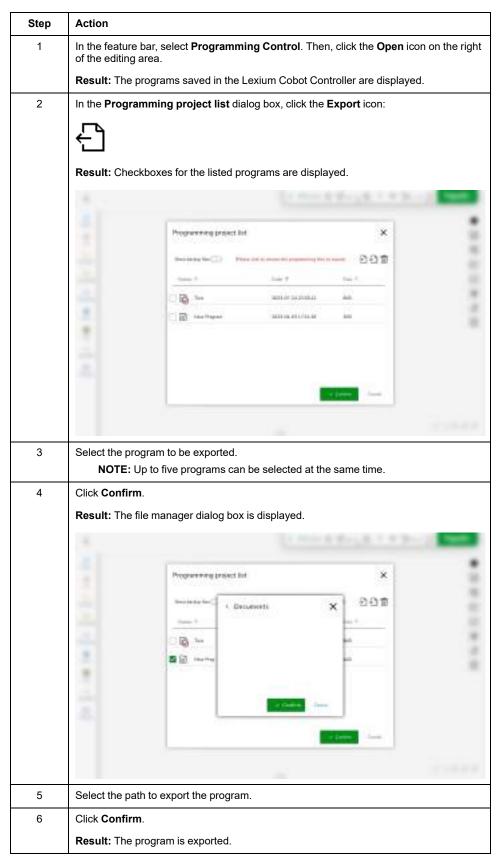
You have two options to save the program:

- To save the program as the latest version, click the Save icon on the right of the editing area.
- To save the program under a new file name, click the **Save as** icon on the right of the editing area.

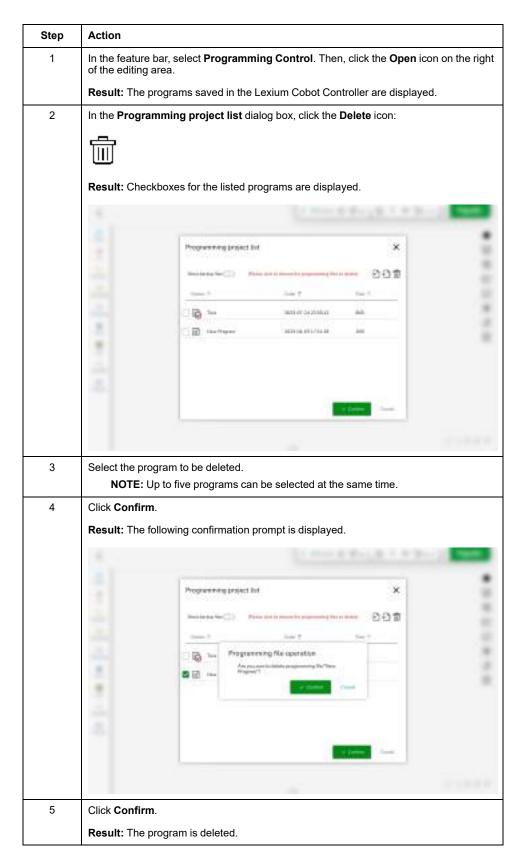
Displaying the Programs

Open a Saved Program

Step	Action
1	In the feature bar, select Programming Control . Then, click the Open icon on the right of the editing area.
	Result: The programs saved in the Lexium Cobot Controller are displayed.
2	Click the name of the program to be opened.
	Result: The program opens.


Importing a Program

To import an exported program to the connected Lexium Cobot Controller, perform the following steps:

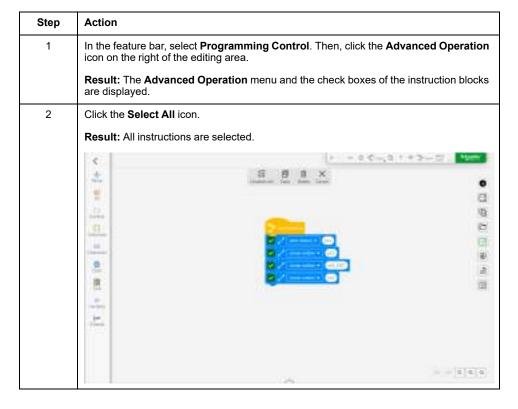


Exporting a Program

To export the program saved in the Lexium Cobot Controller, perform the following steps:

Deleting a Program

Display the Advanced Operation Menu


In the feature bar, select **Programming Control**. Then, click the **Advanced Operation** icon on the right of the editing area.

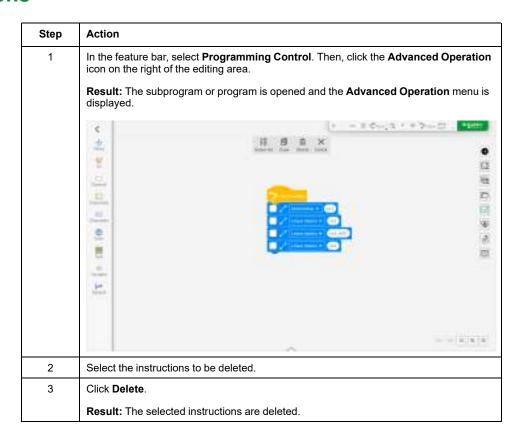
Result: The **Advanced Operation** menu and the check boxes of the instruction blocks are displayed.

Select All Instructions

To select all instructions in the editing area, perform the following steps:

Copy Instructions

To copy selected instructions from the sequence and paste them into the editing area, perform the following steps:

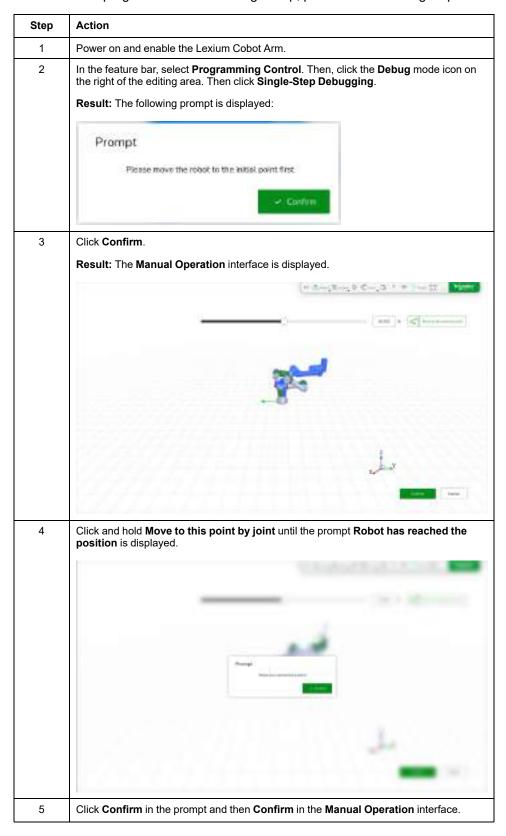

Step	Action
1	In the feature bar, select Programming Control . Then, click the Advanced Operation icon on the right of the editing area.
	Result: The Advanced Operation menu and the check boxes of the instruction blocks are displayed.
2	Select the instructions to be copied.
3	Click Copy.
	Result: The selected instructions are inserted into the editing area.

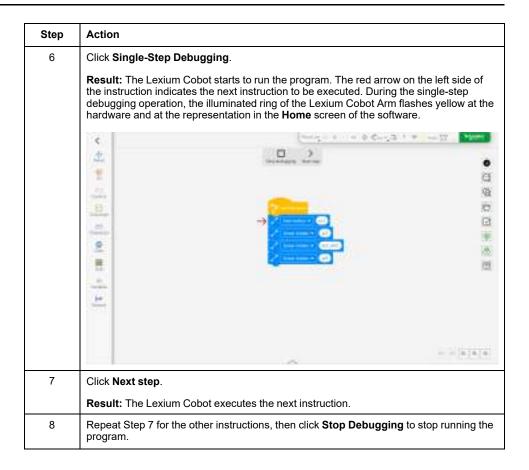
Copy Instructions Across Programs

To copy selected instructions and insert them into the editing area of another program, perform the following steps:

Step	Action
1	In the feature bar, select Programming Control . Then, click the Advanced Operatio icon on the right of the editing area.
	Result: The Advanced Operation menu and the check boxes of the instruction block are displayed.
2	Select the instructions to be copied.
3	Open the program or subprogram into which you want to insert the instructions.
	Result: The following confirmation prompt is displayed.
	Prompt You have selected some instructions in current program, do you want to add them into selection collection?
	✓ Yes No
4	Click Yes. Result: The subprogram or program is opened and the Advanced Operation menu i displayed.
	± E B B 4 B X
	m l
	All and a second a
	# E
	# I
5	

Delete Instructions


Hide the Advanced Operation Menu


Click Cancel or Advanced Operation icon.

Result: The **Advanced Operation** menu is closed.

Single-Step Debugging of the Program

To execute the program instruction in single step, perform the following steps:

Locking the Program

In the feature bar, select **Programming Control**. Then, click the **Lock** icon on the right of the editing area so that it becomes green.

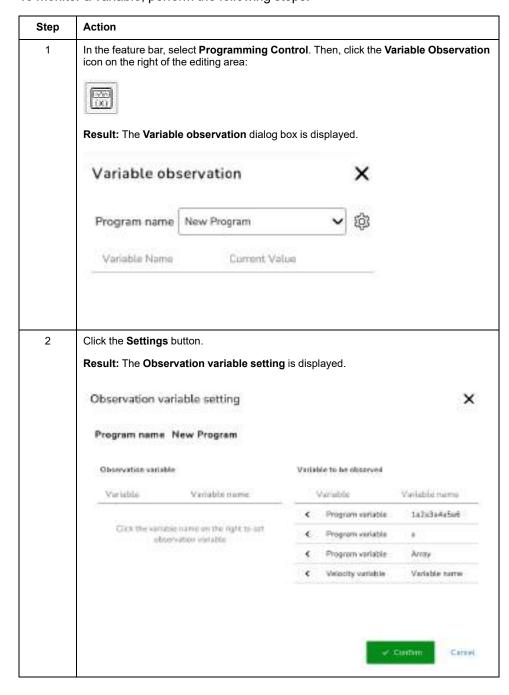
Result: The program is locked and cannot be edited.

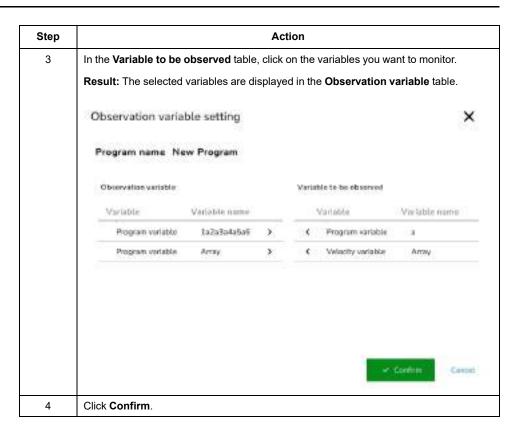
Unlocking the Program

In the feature bar, select **Programming Control**. Then, click the **Lock** icon on the right of the editing area so that it becomes grey.

Result: The program is unlocked and can be edited.

Variable Observation


You can monitor the values of the variables in real time in the running program.


Four types of variables are available:

- · System variables
- Program variables
- Speed variables
- Position variables

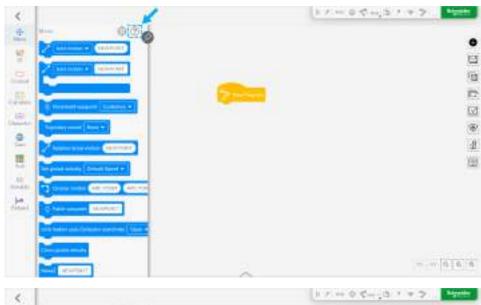
Monitoring a Variable

To monitor a variable, perform the following steps:

Types of Instructions

How to Use Instructions

For building up the program code, EcoStruxure Cobot Expert provides colored and differently shaped program blocks called instructions. The instructions represent commands, functions, logical operations, variables, and data containers. To realize the programming, drag and drop the appropriate instructions from the instruction menu to the appropriate position in the editing area and edit the parameters of the instruction.


The different colors indicate the category of an instruction. Each category has its own color.

The different shapes indicate the type of an instruction and help to understand how to position the block and how the instruction works during programming.

There are three types of instructions:

- · Action instructions
- · Judgement instructions
- Data instructions

The following sections briefly describe these types. For detailed information on the particular instructions, refer to the help in the instructions menu of the **Programming Control** interface.

Action Instructions

Instructions that have a shape with noses and notches are action instructions.

For example, joint motion [x] and if [x] is true.

Action instructions in direct series can form a complete program.

Judgement Instructions

Instructions that have pointed sides are judgement instructions.

For example, Digital output [x] [x] to be [x] and [x] less than [x].

The judgement instruction is placed into the judgement field of other instructions, such as *if* [x] *is true*, *if* [x] *is true*, *otherwise* and *wait until* [x] to state a judgement condition.

Data Instructions

Instructions with rounded sides are data instructions.

For example, Get Analog output [x] [x] and Get [x].

The data instruction is used to capture or store data. It is placed in the data fields of instructions similar to data instruction shape.

Script Editing via Subprogram

What's in This Chapter

Grammar of Lexium Cobot Programming Script	188
Data Types	190
Expressions	
Statements	194
Motion-Related Commands	197
I/O Control	203
Parameter Setting	208
Pose Calculation	
Auxiliary Function Library	215
String Operations	
Program Control and Debugging	
Network Communication	

The Lexium Cobot programming script is a specific programming language (DSL) for controlling Lexium Cobot systems. The scripts can be implemented using the specified grammar in the programming script.

Grammar of Lexium Cobot Programming Script

Identifiers

In the Lexium Cobot programming script, identifiers are case-insensitive and their naming must meet the following rules:

- Use only English letters, numbers and underlines
- Do not use a number as the first character
- Do not use reserved keywords as identifiers

NOTE: A maximum of 255 characters are supported, but it is a good practice not to exceed 30 characters.

Example:

```
# Correct
_var1 = 1
var2 = 1
VAR3 = 1
_2KDDinKAEld74Zl8WzKP = 1
# Incorrect
4VAR = 1
if = 1
```

Reserved Keywords

The following list presents reserved keywords in the Lexium Cobot programming script.

NOTE: Do not use these reserved words as constants, variables, or any other identifier names.

and	exec	not
assert	finally	or
break	for	pass
class	from	print
continue	global	raise
def	if	return
del	import	try
elif	in	while
else	is	with
except	lambda	yield

Script Comments

The Lexium Cobot programming script supports single-line comments. Single-line comments must start with # and can be placed at the end of statements or expressions.

Example:

```
# the first comment
str = "Hello, World!" # the second comment
```

Statements

The Lexium Cobot programming script only supports single-line statement. It neither supports splitting a statement across multiple lines nor incorporating multiple statements within a single line.

Data Types

The Lexium Cobot programming script supports three types of data:

- Scalar
- String
- Array

Furthermore, you can define system variables on basis of the data type array.

Scalar

The Lexium Cobot programming script does technically not distinguish between Boolean type, integer, and float.

For Boolean type, false corresponds to 0 and true corresponds to 1.

Example:

```
var = 1
#or
var = 1.0
#or
var = (expr1 > expr2)
```

String

For definition of strings, use English double quotes (" ") and the escape characters presented in the following table.

Escape character	Description
"	Backslash
\'	Single quote
\"	Double quote
\n	Newline
\t	Horizontal tab
\r	Enter

NOTE: The supported escape characters by the Lexium Cobot programming script should be observed when defining strings, otherwise parse errors may occur.

Example:

```
string1 = "Hello World" #Result: Hello World
string2 = "Hello \"World\"" #Result: Hello "World"
```

Array

Overview

An array is a container that holds a number of data of the same data type. Only scalar type data is supported, not string arrays or nested arrays.

Array Definition

Syntax:

```
arr = [...] # define an array
arr = []# define an empty array
```

Sub-Interval Access of Array

Access to a subsequence of a specific interval within an interval of a specific array is supported and returned in the form of an array. For accessing a sub-interval of an array, use the following syntax:

```
array[startIndx : endIndex : step]
```

If step is 0, the program reports errors and the program execution is terminated. In other cases, although no errors are reported (exceeding the array limit), if startIndex, endIndex and step do not comply with the logical conditions, a value is returned that complies with the conditions within the effective range of the defined array. Otherwise, an empty array is returned if it does not exist.

A special syntax for accessing a subinterval with steps of 1 is provided by default, without using the step parameter:

```
array[startIndex, endIndex]
```

Example:

```
a = [1,2,3,4,5,6,7,8,9,0]

b = a[0:5] \#Result: [1, 2, 3, 4, 5]

b = a[-5:10:1] \#Result: [6, 7, 8, 9, 0]
```

Array and Pose Representation

In the Lexium Cobot programming script, the 6-element array is used to represent the Lexium Cobot joint position or spatial pose. The length unit is mm and the angle unit is °.

Example:

```
endPosJ = [90,90,90,90,90,90] # joint space position array endPosL = [663.5,8.159996,6.950005,90,0,0] # Cartesian spatial position array
```

System Variable

The variable defined in the operating program is released at the end of the program execution. For variables whose required value can be kept for a long time, the Lexium Cobot programming script provides a system variable mechanism.

The system variable can be used directly in the program and the variable value can be retained after the connection is terminated or when the value is modified in the program.

NOTE:

- · System variables support only the data type scalar
- · System variables do not support negative index and interval access
- A program can store up to 100 system variables

The syntax for accessing system variables is as follows:

```
sysvar[id], id∈[5500, 5599]
```

Example:

sysvar[5500] = 100
a = sysvar[5500]

Expressions

Arithmetic Operations

Arithmetic operators are used for the four arithmetic operations and are grouped according to the precedence of the operator. The precedence of (* , /, * , * *) is higher than that of (* , -). Operators with higher priority combine more closely than operators with lower priority, and the operators in the following table comply with left-associativity. The operation is performed from the center to the right when the operator priority is the same.

Operator	Function	Usage
*	Multiplication	expr * expr
1	Division	expr / expr
%	Complementation	expr % expr
**	Exponentiation	expr ** expr
+	Addition	+expr
-	Subtraction	-ехрг

Logical and Relational Operators

The logical operator is applicable to a data type that can be arbitrarily converted to a Boolean value. The relational operator is applicable to the arithmetic operators. The type of the returned value of the logical operator and the relational operator are of the Boolean type.

Associativity	Operator	Function	Usage
Right	!	Logical negation	! expr
Left	&&	logic and	expr && expr
Left	II	Logic or	expr exprr
Left	<	Less than	expr < expr
Left	>	More than	expr > expr
Left	==	Equal to	expr == expr
Left	!=	Not equal to	expr != expr
Left	<=	Less than or equal to	expr <= expr
Left	>=	More than or equal to	expr >= expr

Bitwise Operators

The bitwise operator is applicable to operation objects of type integer, where the operation object is considered as a collection of binary digits. It supports only the operation XOR.

Operator	Function	Usage
٨	XOR	expr1 ^ expr2

Statements

Under normal conditions, statements are implemented sequentially. Usually, it is not sufficient to execute the statements in sequence. Therefore, the Lexium Cobot programming script provides a set of control flow statements that support more complex implementation control.

Simple Statement

In the Lexium Cobot programming script, statements need to be placed in a line separately and most statements do not need terminators.

Simple statement includes expression statement, function call statement, and so on.

Conditional Statement

Overview

The if statement evaluates whether a certain condition is true or not and, based on the result of the evaluation, proceeds with executing another statement. The if statement includes two modes, namely one type of statement with an else branch and the other type of statement without an else branch.

if...end Statement

The if...end statement has the following syntax:

```
if(condition):
statement
end
```

Example:

```
condition = get_digital_output(0,1)
if(condition):
endPosJ = [0,0,0,0,0,0]
movj(endPosJ,0,60,200,0)
end
```

if...else...end Statement

The if...else...end statement has the following syntax:

```
if(condition):
statement
else:
statement
end
```

if...elif...else...end Statement

The if...elif...else...end statement has the following syntax:

```
if(condition1):
statement
elif(condition2):
statement
else:
```

```
statement
end

condition1 = get_digital_output(0,1)
condition2 = get_digital_output(1,1)

if(condition1):
endPosJ = [0,0,0,0,0,0]
movj(endPosJ,0,60,200,0)
elif (condition2):
endPosJ = [1,2,3,4,5,6]
movj(endPosJ,0,10,50,0)
else:
endPosL = [663.5,8.159996,6.950,90,0,0]
movl(endPosL,0,250,250,0)
end
```

Loop Statement

In the while structure the statement is executed as long as the result of the condition evaluation is true (generally it is a statement block). The condition cannot be empty. If the first evaluation of the condition is false, the statement is not executed at all.

The while-loop statement has the following syntax:

while (condition):

i = (i+1)

end

```
statement
end

Example:

while(i <= 4):
endPosJ =[0,0,0,0,0,0]
endPosL =[663.5,8.159996,6.950005,90,0,0]
movl(endPosL,0,250,2 50,0)</pre>
```

Jump Statement

Overview

Jump statements interrupt the execution of the while statement. The Lexium Cobot programming script provides two types of jump statements, namely the break statement and the continue statement.

Break Statement

The break statement terminates the execution of a while statement and continues the execution from the first statement after these statements. In nested loops, break exits only from the loop in which it occurs.

Example:

```
while(condition1):
statement
...
if(condition2):
break
end
...
statement
end
```

Continue Statement

The continue statement ends the present iteration of the loop and immediately starts the next iteration. The continue statement occurs only within the while loop. Continue exits only from the loop in which it occurs. It interrupts the present iteration, but continues the execution of the present loop. In the while statement, this means that the value of the condition is continuously verified.

Example:

```
while (condition1):
    statement
    ...
    if (condition2):
    continue
    end
    ...
    statement end
```

Motion-Related Commands

movl()

movl(target, motionType, speed, acceleration, arcTransition, abortion)

Functional Description

This function performs a linear movement.

If the parameter *motionType* is set to 0, the motion is absolute and is in user frame.

If the parameter *motionType* is set to 1, the motion is relative and is in user frame.

If the parameter *motionType* is set to 2, the motion is relative and is in tool frame.

Parameters

Input	Data type	Description
target	Array with six elements	Describes the Cartesian target [X, Y, Z, RX, RY, RZ] either as absolute or relative pose
motionType	Scalar	Defines the motion as absolute or relative 0: absolute motion in user frame. Target pose is var_pos. 1: relative motion in user frame. Target pose is present pose + target in user frame 2: relative motion in tool frame. Target pose is present pose + target in tool frame
speed	Scalar	TCP Speed in mm/s
acceleration	Scalar	Acceleration in mm/s ²
arcTransition	Scalar	Arc transition parameter 0: the robot stops at the target point 0<: the robot does not stop at the target and smoothly changes to the next motion segment
abortion	Array with three elements	Abortion condition. It is an optional parameter. Array includes three parameters: Input source: scalar 0: Controller DI 1: Tool DI 2: Modbus DI Input index (address): scalar Input triggering state: scalar NOTE: The numeration of DI addresses starts with 0, for example, DI1 has index 0, DI2 has the index 1 and so on.

Example

abslinear = [150, 400, 700, -90, 0, 0] #Defining the target

rellinear_uf = [0, 0, -200, 0, 0, 0] #Defining the target

stop = [0,0,1] #Defining the abortion condition: If DI1 of the controller is set

to 1, the corresponding motion segment will be aborted

movl(abslinear,0,500, 500, 0) #Result: absolute joint motion to the joint position absolute

with maximum speed 60°/s, acceleration 200°/s2, with arc

transition and without abortion condition.

#Result: relative joint motion according to relative with maximum speed 120°/s, acceleration 240°/s², without arc movl(rellinear_uf,1,250,250,1, stop)

transition and with stop as an abortion condition.

movj()

movj(target, motionType, speed, acceleration, arcTransition, abortion)

Functional Description

This function performs a joint movement.

If the parameter *motionType* is set to 0, the motion is absolute.

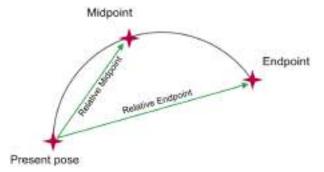
If the parameter *motionType* is set to 1, the motion is relative.

Parameters

Input	Data type	Description
target	Array with six elements	Describes the joint positions [J1, J2, J3, J4, J5, J6] either as absolute or relative position
motionType	Scalar	Default value: 0
		Defines the motion as absolute or relative • 0: absolute motion. Target pose is var_pos. • 1: relative motion. Target pose is present pose + Target.
speed	Scalar	Default value: 60
,		Joint speed in °/s
		NOTE: This is a maximum speed for each joint. The actual speed is adjusted during the motion.
acceleration	Scalar	Default value: 0
		Joint acceleration in °/s
arcTransition	Scalar	Default value: 0
		Arc transition parameter
		0: the robot stops at the target point
		0<: the robot does not stop at the target and smoothly changes to the next motion segment
abortion	Array with 3 elements	Abortion condition. It is an optional parameter. Not chosen by default.
		Array includes three parameters:
		Input source: scalar
		0: Controller DI
		1: Tool DI
		2: Modbus DI
		Input index (address): scalar
		Input triggering state: scalar
		NOTE: The numeration of DI addresses starts with 0, for example, DI1 has index 0, DI2 has the index 1 and so on.

Example

absolute = [0,30,60,30,0,0]#Defining the target for absolute movementrelative = [180, 60, 0,0,0,0]#Defining the target for relative movementstop = [0,0,1]#Defining the abortion condition: If DI1 of the controller is set to 1, the corresponding motion segment will be abortedmovj(absolute, 0,60,200,10)#Result: absolute joint motion to the joint position absolute with maximum speed 60°/s, acceleration 200°/s², with ArcTransition and without abortion conditionmovj(relative, 1, 120, 240, 0, stop)#Result: relative joint motion according to relative with maximum speed 120°/s, acceleration 240°/s², without ArcTransition and with stop as an abortion condition


movc()

movc(midpoint, endpoint, motionType, speed, acceleration, arcTransition, counter, abortion)

Functional Description

This function performs a circular movement. The circle is defined by three points:

- Present pose
- · Midpoint
- Endpoint

Parameters

Input	Data type	Description
midpoint	Array with six elements	Describes the middle point [X, Y, Z, RX, RY, RZ] either as absolute or relative pose
endpoint	Array with six elements	Describes the end point [X, Y, Z, RX, RY, RZ] either as absolute or relative pose (relative to the first point)
motionType	Scalar	Value range: 0,1 Defines the motion as absolute or relative • 0: absolute motion. Target pose is var_pos. • 1: relative motion. Target pose for middle point is present pose + Midpoint, the target pose for end point is present pose + Endpoint.
speed	Scalar	Joint speed in °/s
acceleration	Scalar	Joint acceleration in °/s²
arcTransition	Scalar	Arc transition parameter 0: the robot stops at the target point. 0<: the robot does not stop at the target and smoothly changes to the next motion segment.

Input	Data type	Description
counter	Scalar	Defines number of circles to be performed: 0: motion only up to the endpoint >0: defines number of circles
abortion	Array with 3 elements	Abortion condition. It is an optional parameter. Array includes 3 parameters: Input source: scalar Controller DI Tool DI Modbus DI Input index (address): scalar Input triggering state: scalar NOTE: The numeration of DI addresses starts with 0, for example, DI1 has index 0, DI2 has the index 1 and so on.

Example

stop = [0,0,1]	#Defining the abortion condition: If DI1 of the controller is set to 1, the corresponding motion segment will be aborted
midpointCart = [-400, 100, 550, -90, 0, 90]	
endpointCart = [-400, 50, 600, -90, 0, 90]	#Defining midpoint and endpoint for absolute motion
midpointRel = [0, 50, 50, 0, 0, 0]	
endpointRel = [0, 0, 100, 0, 0, 0]	#Defining midpoint and endpoint for relative motion
movc(midpointCart, endpointCart, 0, 120, 250, 0, 1.5, stop)	#Result: circle motion with Cartesian definition of the points with maximum speed 120 mm/s, acceleration 240 mm/s², without <i>ArcTransition</i> , 1.5 circles performed and with stop as an abortion condition
movc(midpointRel, endpointRel, 1, 60, 120, 0, 0)	#Result: circle motion with relative definition of the points with maximum speed 60 mm/s, acceleration 120 mm/s², without <i>ArcTransition</i> , motion performed only up to endpoint and without an abortion condition

get_atl_joint_pose()

... = get_atl_joint_pose()

Functional Description

This function obtains the current joint position of the Lexium Cobot Arm. The returned value is an array with six elements representing the joint positions [J1, J2, J3, J4, J5, J6].

Example

jointPose = get_atl_joint_pose() #Result: joint position will be saved in variable JointPose.

get_atl_TCP_pose()

... = get_atl_TCP_pose()

Functional Description

This function obtains the current TCP pose of the Lexium Cobot Arm. The returned value is an array with six elements representing the Cartesian pose [X, Y, Z, RX, RY, RZ].

Example

TCPPose = get_atl_TCP_pose() #Result: TCP position will be saved in variable TCPPose.

get_atl_flange_pose()

... = get_atl_flange_pose()

Functional Description

This function obtains the end flange position of the Lexium Cobot Arm. The returned value is an array with six elements representing the Cartesian pose [X, Y, Z, RX, RY, RZ].

Example

endFlangePose = get_atl_flange_ #Result: end flange position will be saved in variable pose() #Result: end flange position will be saved in variable EndFlangePose.

enable_speed_override()

enable_speed_override(motionType, speed, acceleration)

Functional Description

This function sets the speed and acceleration limit. The limit can be removed by function <code>disable_speed_override()</code>.

Parameters

Input	Data type	Description
motionType	Scalar	Defines the motion type which is limited
		 0: Cartesian motion. The speed and acceleration units are mm/s and mm/s². If Cartesian is chosen as motion type, the function will have no impact on joint motion
		 1: joint motion. The speed and acceleration units are °/s and °/s². If joint motion is chosen as motion type, the function will have no impact on any Cartesian motion (linear, circle)
speed	Scalar	Defines the speed limit.
acceleration	Scalar	Defines the acceleration limit.

Example

enable_speed_override(0, 150, 300)

#Result: the linear motion speed is limited to 150 mm/s, acceleration to 300 mm/s2.

disable_speed_override()

disable_speed_override(motionType)

Functional Description

This function removes the speed and acceleration limitsset by the enable_speed_ override() function.

Parameters

Input	Data type	Description
motionType	Scalar	Defines the motion type for which the limit is removed.
		0: Cartesian motion
		1: joint motion
		NOTE: Only the limit for the selected motion type is removed.

Example

enable_speed_override(0, 150,

#Result: the linear motion speed is limited to 150 mm/s,

acceleration to 300 mm/s²

disable_speed_override(0) #Result: previously defined speed and acceleration limit for

linear motion is removed.

I/O Control

set_digital_output()

set_digital_output(source, index, state, immediate)

Functional Description

This function sets the digital output signal.

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the DO: O: Cabinet IO 1: Tool IO 2: Extended IO 3: reserved 4: Modbus IO 5: Profinet IO 6: EtherNet/IP IO
index	Scalar	Index of the controlled digital output. NOTE: The numeration of DO addresses starts with 0, for example, DO1 has index 0, DO2 has the index 1 and so on.
state	Scalar	State of the digital output: 0: Off 1: On
immediate	Scalar	Defines whether the command is executed immediately or before the next motion command. • 0: non-immediate (postponed) command • 1: immediate command

Example

set_digital_output(0,1,1,0)#Result: DO2 of the controller is set to On before next motion.set_digital_output(1,0,0,1)#Result: DO1 of the Tool IOs is set to Off immediately

set_analog_output()

set_analog_output(source, index, state, immediate)

Functional Description

This command is used to control analog output signal. The output can be used either as voltage or current output. The output must be configured in the EcoStruxure Cobot Expert. For detailed information, refer to Setting an Analog Output Signal, page 149.

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the AO: • 0: Cabinet IO • 1: Tool IO • 2: Extended IO
index	Scalar	Index of the controlled analog output. NOTE: The numeration of AO addresses starts with 0, for example, AO1 has index 0, AO2 has the index 1 and so on.
numeric value	Scalar	Defines the output value. The value represents the percentage of the maximum range (10 V or 20 mA).
immediate	Scalar	Defines whether the command is executed immediately or before the next motion command. • 0: non-immediate (postponed) command • 1: immediate command

Example

set_analog_output(0,0,50,0) #Result: AO1 of the cabinet is set to 50 % of the range (5 V or 10 mA depending on the configuration before the next motion command).

set_analog_output(1,0,0,1) #Result: AO2 of the Tool end is set to 100 % of the range (10 V or 20 mA depending on the configuration) immediately.

get_digital_output()

... = get_digital_output(source, index)

Functional Description

This function gets the state of a digital output. The range of the returned value is [0,1]:

0: Off

• 1: On

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the DO: O: Cabinet IO 1: Tool IO 2: Extended IO
index	Scalar	Index of the controlled digital output. NOTE: The numeration of DO addresses starts with 0, for example, DO1 has index 0, DO2 has the index 1, and so on.

Example

DOstate = get_digital_output (0,0) #Result: State of DO1 of the controller is saved in variable DOstate.

get_analog_output()

... = get_analog_output(source, index)

Functional Description

This function gets the value of an analog output. The value represents the percentage of the maximum range (10 V dc or 20 mA). The output can be used either as voltage or current output. The output must be configured in EcoStruxure Cobot Expert. For detailed information, refer to Setting an Analog Output Signal, page 149.

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the AO: O: Cabinet IO 1: Tool IO 2: Extended IO
index	Scalar	Index of the controlled analog output. NOTE: The numeration of AO addresses starts with 0, for example, AO1 has index 0, AO2 has the index 1, and so on.

Example

AOstate = get_analog_output

#Result: value of AO1 of the controller is saved in variable AOstate.

get_digital_input()

... = get_digital_input(source, index)

Functional Description

This function gets the state of a digital input. The range of the returned value is [0,1]:

- 0: Off
- 1: On

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the DI: O: Cabinet IO 1: Tool IO 2: Extended IO
index	Scalar	Index of the controlled digital input. NOTE: The numeration of DI addresses starts with 0, for example, DI1 has index 0, DI2 has the index 1, and so on.

Example

DIstate = get_digital_input(0,0)

#Result: state of DI1 of the controller is saved in variable DIstate.

get_analog_input()

... = get_analog_input(source, index)

Functional Description

This function gets the value of an analog input. The value represents the percentage of the maximum range (10 V dc or 20 mA). The input can be used either as voltage or current input. The input must be configured in EcoStruxure Cobot Expert. For detailed information, refer to Setting an Analog Input Signal, page 148.

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the AI: O: Cabinet IO 1: Tool IO 2: Extended IO
index	Scalar	Index of the controlled analog input. NOTE: The numeration of Al addresses starts with 0, for example, Al1 has index 0, Al2 has the index 1, and so on.

Example

Alstate = get_analog_output (0,0)

#Result: value of Al1 of the controller is saved in variable *Alstate*.

wait_input()

wait_input(source, index, expectedValue, time)

Functional Description

This function monitors for an expected value of a digital input signal. Feedback of this function can be acquired with *get_timeout* function. If the expected value is detected, the next command is executed.

Parameters

Input	Data type	Description
source	Scalar	Defines the source of the AI:
		0: Cabinet IO
		1: Tool IO
		2: Extended IO
index	Scalar	Index of the controlled input.
		NOTE: The numeration of Al addresses starts with 0, for example, Al1 has index 0, Al2 has the index 1 and so on.
expectedValue	Scalar	Defines which value is expected. If the expected value is detected, the next command is executed and function <code>get_timeout()</code> returns value 1.
time	scalar	The maximum waiting time in [s].
		If the set limit is expired without input signal, timeout mark is set and function <code>get_timeout()</code> returns value 1. The next command is executed.
		If 0 is set as value, there is no time limit.

Example

wait_input(0,0,1,0)

#Result: monitoring for value 1 on DI1 of the controller without time limit. No further command execution until DI1 has value 1.

get_timeout()

... = get_timeout()

Functional Description

This function obtains the feedback of the wait_input() command. The returned value can be either:

- 0: no timeout, the signal was detected within expected time
- 1: timeout, no signal detected within expected time

Example

#Result: monitoring for value 1 on DI1 of the controller for 10 wait_input(0,0,1,10)

seconds.

timeOut = get_timeout #Result: the feedback value is saved in variable tmeOut. 1 if no signal in wait_input within 10 second, 0 if signal detected within 10 seconds

Parameter Setting

set_payload()

set_payload(mass, centerOfMass)

Functional Description

This function sets the payload settings of the Lexium Cobot Arm.

Parameters

Input	Data type	Description
mass	Scalar	Defines the mass of the load in kg
centerOfMass	Array with 3 elements	Describes the offset of the center of mass in the End Flange Coordinate System [X, Y, Z] in mm

Example

CoM = [10,20,30] #Defining centerOfMass parameter in the variable CoM.

set_payload(3.5, CoM) #Result: payload settings changed to 3.5kg with an offset defined in CoM.

get_payload()

set_payload(mass, centerOfMass)

Functional Description

This function obtains the payload settings of the Lexium Cobot Arm. The returned value is an array with four elements:

- [0]: load mass in kg
- [1]-[3]: the offset of the center of mass in the End Flange Coordinate System [X, Y, Z] in mm

Example

payload = get_payload() #Result: payload settings are saved in variable payload.

get collision level()

set_payload(mass, centerOfMass)

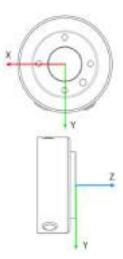
Functional Description

This function obtains the collision level settings of the Lexium Cobot Arm. The returned value is a scalar with value range [0...5]:

- 0: unlimited mode
- 1-5: collision levels

Example

colLevel = get_collision_level()


#Result: collision level is saved in variable colLevel.

set_tool()

set_tool(offset)

Functional Description

This function sets the offset of the tool end relative to the end flange.

Parameters

Input	Data type	Description
offset	Array with six elements	Defines the offset [X, Y, Z, RX, RY, RZ] relative to the end flange.

Example

tool1 = [10, 20, 30, 40, 50, 60]

#Defining offset parameters in the variable tool1.

set_tool(tool1)

#Result: offset of the tool end is set according to parameters defined in variable *tool1*.

set_tool_id()

set_tool_id(id)

Functional Description

This function sets one of the pre-defined TCP settings.

Parameters

Input	Data type	Description
id	Scalar	Selects the pre-defined TCP settings from the TCP list in EcoStruxure Cobot Expert.

Example

set_tool_id(1)

#Result: offset of the tool end is set according to the first predefined TCP setting.

get_tool_offsets()

... = get_tool_offsets()

Functional Description

This function obtains the offset of the tool end relative to the end flange. The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Example

offset = get_tool_offsets()

#Result: offset of the tool end is saved in variable offset.

get_tool_offsets_of()

... = get tool offsets of(id)

Functional Description

This function obtains the offset values of the designated tool end relative to the end flange. The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Parameters

Input	Data type	Description
id	Scalar	Represents the designated pre-defined TCP setting.

Example

offset = get_tool_offsets_of(2)

#Result: offset values of second pre-defined TCP setting are saved in variable offset.

set_user_frame()

set_user_frame(userFrame)

Functional Description

This function sets the user frame relative to the world frame.

Parameters

Input	Data type	Description
userFrame	Array with six elements	Defines the offset of user frame [X, Y, Z, RX, RY, RZ] relative to the world frame.

Example

userFrame1= [10,20,30,40,50,60] #Defining offset parameters in the variable userFrame1.

set_user_frame(userFrame1) #Result: offset of the user frame is set according to parameters defined in variable userFrame1.

set_user_frame_id()

set_user_frame_id(id)

Functional Description

This function sets one of the pre-defined user frames.

Parameters

Input	Data type	Description
id	Scalar	Chooses the pre-defined user frame from the list in EcoStruxure Cobot Expert.

Example

set_user_frame_id(1)

#Result: the first pre-defined user frame is set

get_user_frame()

... = get_user_frame()

Functional Description

This function obtains the offset of the frame. The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Example

userFrame = get_user_frame()
#Result: offset of the frame is saved in variable userFrame.

get_user_frame_of()

... = get_user_frame_of(id)

Functional Description

This function obtains the offset values of a pre-defined user frame. The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Parameters

Input	Data type	Description
id	Scalar	Represents the designated pre-defined user frame.

Example

Pose Calculation

pose_add()

... = pose_add(pos1, pos2)

Functional Description

This function calculates the addition of two poses. The resulting pose is calculated as follows:

- res.P = pos1.P + pos2.P
- res.R = pos2.R * pos1.R

The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Parameters

Input	Data type	Description
pos1, pos2	Array with six elements	Defines the two poses [X, Y, Z, RX, RY, RZ] to be added.

pose_sub()

... = pose_sub(pos1, pos2)

Functional Description

This function calculates the subtraction of two poses. The resulting pose is calculated as follows:

- res.P = pos1.P pos2.P
- res.R = inv(pos2.R) * pos1.R

The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Parameters

Input	Data type	Description
pos1, pos2	Array with six elements	Defines the two poses [X, Y, Z, RX, RY, RZ] to be subtracted.

pose_dist()

 \dots = pose_dist(pos1, pos2)

Functional Description

This function calculates the distance between two poses. Only the position coordinate is considered. The returned value is a scalar.

Parameters

Input	Data type	Description
pos1, pos2	Array with six elements	Defines the two poses [X, Y, Z, RX, RY, RZ].

kine_inverse()

... = kine_inverse(posJ, posC)

Functional Description

This function calculates the inverse kinematic solution. It calculates the joint position [J1, J2, J3, J4, J5, J6] corresponding to Cartesian position posC [X, Y, Z, RX, RY, RZ].

The returned value is an array with six scalar elements [J1, J2, J3, J4, J5, J6].

Parameters

Input	Data type	Description
posJ	Array with six elements	Defines the joint position [J1, J2, J3, J4, J5, J6] near the calculated values to confirm the selection of calculated position.
posC	Array with six elements	Defines the Cartesian pose [X, Y, Z, RX, RY, RZ].

kine_forward()

... = kine_forward(posJ)

Functional Description

This function calculates the forward kinematic solution. It calculates the Cartesian position [X, Y, Z, RX, RY, RZ] corresponding to joint position [J1, J2, J3, J4, J5, J6].

The returned value is an array with six scalar elements [X, Y, Z, RX, RY, RZ].

Parameters

Input	Data type	Description
posJ	Array with six elements	Defines the joint position [J1, J2, J3, J4, J5, J6].

Auxiliary Function Library

Mathematical Calculations Library

Function	Description
res = atan2(y,x)	Arc-tangent function, which will return the arc-tangent of value y/x, in degree.
res = abs(arg)	Find the absolute value of expression
res = acos(arg)	Arc-cosine function, in degree
res = asin(arg)	Arc-sine function, in degree
res = cos(arg)	Cosine function
res = sin(arg)	Sine function
res = tan(arg)	Tangent function
res = floor(arg)	Round down to an integer
res = ceil(arg)	Round up to an integer
res = round(arg)	Round off
res = sqrt(arg)	Take the square root
res = rad2deg(arg)	Radians to degrees
res = deg2rad(arg)	Degrees to radians

String Operations

string_concat()

... = string_concat(str1, str2)

Functional Description

This function concatenates two strings.

The returned value is a new string.

Parameters

Input	Data type	Description
str1	String	Defines the first string to be concatenated.
str2	String	Defines the second string to be concatenated.

Example

str1 = "hello," #defines the first string str1. str2 = "world" #defines the first string str2.

str3 = string_concat(str1, str2) #the result of concatenation is saved in variable str3.

get_string_from_array()

... = get_string_from_array(arr, sep, str)

Functional Description

This function converts an array into a string.

The returned value is a scalar representing the length of the string.

Parameters

Input	Data type	Description
arr	Array	Defines the array.
sep	String	Defines the separator for the string representation.
str	String	Defines the variable where the result is saved.

Example

arr = [1,2,3,4,5] #defines the array arr. sep = ";" #defines the separator ";"

str = ""#defines the string str where the result is saved.strLen = get_string_from_array#Result: string "1; 2; 3; 4; 5" is saved in variable str. The returned value 13 is saved in variable strLen.

get_array_from_string()

... = get_array_from_string(str, sep, arr)

Functional Description

This function converts a string into an array.

The returned value is a scalar representing the number of elements in the array.

Parameters

Input	Data type	Description
str	String	Defines the variable where the result is saved.
sep	String	Defines the separator for the string representation.
arr	Array	Defines the array.

Example

str = "1,2,3,4,5" #defines the string str. arr = [1,0,0,0,0] #defines the array arr where the result is saved. sep = "," #defines the separator "," str = "" #defines the string str where the result is saved. $resNum = get_array_from_string$ #Result: array [1,2,3,4,5] is saved in variable arr. The returned value 5 is saved in variable resNum.

get_length()

... = get_length(str_arr)

Functional Description

This function obtains the length of a string or a number of elements in an array.

The returned value is a scalar.

Parameters

Input	Data type	Description
str_arr	String or array	Defines the string or array.

Example

 $str_arr = "1,2,3,4,5"$ #defines the string str_arr .

length = get_length (str_arr) #Result: length of the variable str_arr is saved in variable

length.

strcmp()

 $\dots = strcmp(str1, str2)$

Functional Description

This function compares two strings.

The returned value is a scalar that represents a Boolean value:

- 0 represents TRUE strings are equal
- Else represents FALSE strings are different

Parameters

Input	Data type	Description
str1, str2	String	Define the strings to be compared.

Example

str1 = "1,2,3,4,5" #defines the string str1. str2 = "1,2,3,4,5" #defines the string str2.

cmpRes = strcmp (str1, str2) #Result: comparison result is saved in variable cmpRes.

Program Control and Debugging

log_message()

log_message(level, message)

Functional Description

This function adds new log information that can be displayed in the log.

Parameters

Input	Data type	Description
level	Scalar	Log message type: • 1 – Info • 2 – Warning • 3 – Error
message	String or scalar	Log message text

Example

log_message (1, "Hello")

Log information of type Info with the text "Hello" is displayed in the log.

get_system_clock()

... = get_system_clock()

Functional Description

This function obtains clock information from the system. The time is reset when the controller is rebooted.

The returned value is a scalar representing ms passed after last restart.

sleep()

sleep(time)

Functional Description

This function delays for a period of time.

Parameters

Input	Data type	Description
time	Scalar	Defines the delay time in [s]

pause()

pause()

Functional Description

This function pauses the program.

exit()

exit()

Functional Description

This function stops the program.

Network Communication

socket_open()

... = socket_open(ip, port, tlsEnabled)

Functional Description

This function opens the specified IP and port number, stores the created SOCKET handle in a variable and returns.

NOTE: A TCP server is required to implement the TLS encryption.

Parameters

Input	Data type	Description
ip	String	Represents the TCP server address in string format, for example, "192.168.1.10".
port	Scalar	Represents the TCP server port number.
tlsEna- bled	Scalar	Enable the TLS option for the socket, 0 for disabled and 1 for enabled.

socket_close()

... = socket_close(ip, port, tlsEnabled)

Functional Description

This function opens the specified IP and port number, stores the created SOCKET handle in a variable and returns.

NOTE: A TCP server is required to implement the TLS encryption.

Parameters

Input	Data type	Description
ip	String	Represents the TCP server address in string format, for example, "192.168.1.10".
port	Scalar	Represents the TCP server port number.
tlsEna- bled	Scalar	Enable the TLS option for the socket, 0 for disabled and 1 for enabled.

socket_get_var()

... = socket_get_var(sockid, type, argname)

Functional Description

This function requests the setting of server parameters. Returned value type depends on parameter type.

The function sends the string *get* <*argname*> through the socket and the data form <*argname*><*value*> is expected to be received.

There are 2 seconds timeout and it returns 0 after timeout.

When an array is expected, the sending form from server is: <arrName><[num1, num2, ..., numN]>

When a string is expected, sending form from server is: <strName><"stringValue">

Parameters

Input	Data type	Description
sockid	Scalar	Represents the socket ID and must be created first.
type	Scalar	Represents the parameter type:
argname	String	Represents the variable name to be obtained as string, for example, "argname".

socket_read_real()

... = socket_read_real(sockid, num)

Functional Description

This function obtains an array of real values from the server to be stored in a returned variable of type scalar.

There is a two-second timeout. If exceeded, it returns 0.

Function sending format is *get#real#num#* and expected receiving data format is < [num1, num2, ..., numN]>

Parameters

Input	Data type	Description
sockid	Scalar	Represents the socket ID and must be created first.
num	Scalar	Represents the number of values expected to be received.

socket_read_string()

... = socket_read_string(sockid, prefix, suffix)

Functional Description

This function obtains a string from the server and stores it in the returned variable of type string.

There is a two-second timeout. If exceeded, it returns 0.

Function is sent in the form of *get#string#prefix#suffix#* and expected data receiving form is *"prefixSTRINGsuffix"*.

Parameters

Input	Data type	Description
sockid	Scalar	Represents the socket ID and must be created first.
prefix	Scalar	Prefix requirements for the string expected to be received.
suffix	Scalar	Suffix requirements for the string expected to be received.

socket_send()

... = socket_send(sockid, var)

Functional Description

This function sends a variable value in string format through the specified socket. The data is sent in the following form:

Number: 123.4

Number array: 11, 22, 33

· String: "string"

The returned value is a scalar representing the send result:

1: successful2: unsuccessful

Parameters

Input	Data type	Description
sockid	Scalar	Represents the socket ID and must be created first.
var	Scalar / array / string	Represents the variable to be sent.

socket_recv()

... = socket_recv(sockid, timeout)

Functional Description

This function receives data from the server with a defined timeout.

NOTE: The function only receives data and does not send a request to the server.

If data is not received in time, it returns an empty string.

If data is successfully received, the function returns the received string.

Parameters

Input	Data type	Description
sockid	Scalar	Represents the socket ID and must be created first.
timeout	Scalar	Represents the receive timeout setting in [s].

Appendices

What's in This Part

Additional Information on the Lexium Cobot	225
Further Information About the Manufacturer	241

Additional Information on the Lexium Cobot

What's in This Chapter

Data Types of Lexium Cobot Parameters	225
Modbus Address Table	
Profinet Address Table	233
EtherNet/IP I/O Address Table	237

Data Types of Lexium Cobot Parameters

Get the Joint Position

Data type: array

Length: 6

Meaning: six elements in the array represent the angle values (unit: degree) from the first joint to the sixth joint in sequence.

Get the Tool and Center Position

Data type: array

Length: 6

Meaning: six elements in the array represent the spatial positions of the origin of the existing tool coordinate system in the user coordinate system, corresponding to X, Y, Z (unit: mm), RX, RY and RZ (unit: degree) from the 0 element to the 5^{th} element in sequence.

Get the Flange Center Pose

Data type: array

Length: 6

Meaning: it represents the spatial positions of the Lexium Cobot Arm end flange center in the user coordinate system, corresponding to X, Y, Z (unit: mm), RX, RY and RZ (unit: degree) from the 0 element to the 5th element in sequence.

Capture the End Payload

Data type: array

Length: 4

Meaning: it represents the Lexium Cobot Arm stored end payload information, corresponding to the load mass (unit: kg) and X, Y and Z distances (unit: mm) of the centroid of payload relative to the flange center from the 0 element to the 3rd element in sequence.

Capture the End Force

Data type: array

Length: 6

Meaning: capture the net torque value (unit: N.m) after the sensor end load is compensated by the end torque sensor.

Capture the Sensitivity

Data type: number

Meaning: the configured collision sensitivity value.

System Time

Data type: number

Meaning: capture the system time in ms since the last start of the Lexium Cobot Controller.

Modbus Address Table

ID	Туре	Name	Data type	Function code	Register type			
8	Common digital	DO0	BOOL	02	Discrete input is readable but not			
9	input	DO1			writable			
10		DO2						
133		DO125						
134		DO126						
135		DO127						
40	Common digital	DI0	BOOL	01/05/15	Coil state			
41	output	DI1						
42		DI2						
165		DI125						
166		DI126						
167		DI127						
96	Analog input	AO00	UINT16	04	Input register is readable but not			
97		AO01			writable			
98		AO02						
99		AO03						
109		AO13						
110		AO14						
111		AO15						
112		AO16	INT16					
113		AO17						
114		AO18						
125		AO29						
126		AO30						
127		AO31						
128		AO32	FLOAT32 (Big-Endian)					
129								
130		AO33						
131								
132		AO34						
133								
186		AO61						
187								
188		AO62						
189								
190		AO63						
191								

ID	Туре	Name	Data type	Function code	Register type
100	Analog output	Al00	UINT16	03/06	Holding register is readable and writable
101		Al01			writable
102		Al02			
103		AI03			
104		AI04			
111		Al11			
112		Al12			
113		Al13			
114		Al14			
115		Al15			
116		Al16	INT16		
117		Al17			
118		Al18			
119		Al19			
120		Al20			
127		Al27			
128		Al28			
129		Al29			
130		Al30			
131		Al31			
132		Al32	FLOAT32		
133			(Big-Endian)		
134		Al33			
135					
136		Al34			
137					
138		Al35			
139					
140		Al36			
141					
186		Al59			
187					
188		Al60			
189					
190		Al61			
191]				
192]	Al62			
193					
194		Al63			
195					

ID	Туре	Name	Data type	Function code	Description	Unit	Register type
300	Lexium	Servo version No.	INT32	04	-	-	Input register
302	Cobot data	Lexium Cobot serial No.					is readable but not writable
304		Joint 1 voltage	INT32		Voltage of each joint	V	
306		Joint 2 voltage					
308		Joint 3 voltage					
310		Joint 4 voltage					
312		Joint 5 voltage					
314		Joint 6 voltage					
316		Joint 1 temperature			Temperature of each joint	°C	
318		Joint 2 temperature					
320		Joint 3 temperature					
322		Joint 4 temperature					
324		Joint 5 temperature					
326		Joint 6 temperature					
328		Joint 1 servo error code	INT32		Servo serial No. of each joint	-	
330		Joint 2 servo error code					
332		Joint 3 servo error code					
334		Joint 4 servo error code					
336		Joint 5 servo error code					
338		Joint 6 servo error code					
340		Joint 1 error state	UINT16		Servo error state		
341		Joint 2 error state			0 means no error detected		
342		Joint 3 error state			1 means error		
343		Joint 4 error state			detected		
344		Joint 5 error state					
345		Joint 6 error state					

ID	Туре	Name	Data type	Function code	Description	Unit	Register type
346	Lexium	Joint 1 enabling state	UINT16	04	Servo enabling state	_	Input register
347	Cobot data	Joint 2 enabling state	-		0 means disabling		is readable but not
348	1	Joint 3 enabling state	-		1 means enabling		writable
349	-	Joint 4 enabling state	-				
350	-	Joint 5 enabling state	-				
351	1	Joint 6 enabling state	-				
352	=	Joint 1 collision state	-		Servo collision detection		
353	1	Joint 2 collision state			state • 0 means no		
354		Joint 3 collision state			collision detected		
355		Joint 4 collision state			1 means collision detected		
356		Joint 5 collision state					
357		Joint 6 collision state					
358		Joint 1 current	Float32		Current of each joint	Α	
360		Joint 2 current					
362		Joint 3 current					
364		Joint 4 current					
366		Joint 5 current					
368		Joint 6 current					
370		Sensor force x			Force/Torque of each	N	
372		Sensor force y			joint		
374		Sensor force z					
376	1	Sensor torque rx				Nm	
378	1	Sensor torque ry					
380		Sensor torque rz					
382		Joint 1 position			Position of each joint	0	
384		Joint 2 position	1				
386		Joint 3 position	1				
388	1	Joint 4 position					
390	1	Joint 5 position	1				
392	1	Joint 6 position					

ID	Туре	Name	Data type	Function code	Description	Unit	Register type
394	Lexium	Joint 1 speed	Float32	04	Speed of each joint	°/s	Input register
396	Cobot data	Joint 2 speed					is readable but not
398		Joint 3 speed				writable	
400		Joint 4 speed					
402		Joint 5 speed					
404		Joint 6 speed					
406		TCP position X			TCP	mm	
408		TCP position Y					
410		TCP position Z					
412		TCP position RX				۰	
414		TCP position RY					
416		TCP position RZ					
418		TCP speed X			TCP speed	mm/s	
420		TCP speed Y					
422		TCP speed Z					
424		TCP speed RX				°/s	
426		TCP speed RY					
428		TCP speed RZ					
430		TCP_OFFSET_X			Tool coordinate system	mm	
432		TCP_OFFSET_Y					
434		TCP_OFFSET_Z					
436		TCP_OFFSET_RX				0	
438		TCP_OFFSET_RY					
440		TCP_OFFSET_RZ					
442		BASE_OFFSET_X			User coordinate system	mm	
444		BASE_OFFSET_Y					
446		BASE_OFFSET_Z					
448		BASE_OFFSET_RX				٥	
450		BASE_OFFSET_RY					
452		BASE_OFFSET_RZ					

ID	Туре	Name	Data type	Function code	Description	Unit	Register type
454	Lexium Cobot	PROTECTIVE_STOP	UINT16	04	Lexium Cobot collision detected: 1	-	Input register is readable but not
	data				No Lexium Cobot collision detected: 0		writable
455		EMERGENCY_STOP			Emergency stop		
456		POWER_ON			Power-on		
457	ROBOT_ENABLE	Upper enabling					
458		ON_SOFT_LIMIT		Software limit			
459		INPOS			Reach the target position		
460		Motion mode		Servo position mode: 4			
					Admittance control mode: 2		
					Hand-guided mode: 1		
			Other mode (Jog and other operation): 0				
461		Reduction mode level			Reduction mode level:		
					First-level reduction: 1		
					Second-level reduction: 2		
					Protective stop: 3		
462		Speed magnification	FLOAT32		Speed setting of program		
464		MOTION_ERRCODE	INT32		Error code		
466		CAB_TEMPERATURE	FLOAT32		Lexium Cobot Controller temperature		
468		CAB_ AVERAGEPOWER			Lexium Cobot Controller power		
470		CAB_ AVERAGECURRENT			Lexium Cobot Controller current		
472		UHI_PULES	FLOAT32		Conveyor belt pulse		
474		UHI_SPEED			Conveyor belt movement speed		
476		UHI_DIR	UINT16		Conveyor belt movement direction		
477		UHI_ORIGIN_PULES	INT32		Original pulse of conveyor belt		
479		Reserved	UINT16		_	1	

Profinet Address Table

Transmis	sion type Lexi	ium Cobot >	> External (Controller (R->P)	_	_	_	_			
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules		
0	Robot ser	ial number (int32)							Robot state, safety–related		
32	Servo ver	sion number	(int32)							settings		
64	CAB_AVE	CAB_AVERAGECURRENT (float) [A]										
96	CAB_AVE	CAB_AVERAGEPOWER (float) [W]										
128	CAB_TEN	CAB_TEMPERATURE (float) [°C]										
160	Power state											
192	MOTION_	_ERRCODE	(int32)									
224	Move mod	Move mode (uint8) Reduction gency mode level Reduction Stop Protective stop Soft limit state Retention Retention Retention										
256	Reserved	(int) 4 bytes	;						•			
288	Joint 1 vo	Itage (float)	[V]							Joint parameter		
320	Joint 2 vo	ltage (float)	[V]							2_R->P_Joints		
352	Joint 3 vo	ltage (float)	[V]							172+48 Bytes		
384	Joint 4 vo	Itage (float)	[V]							1		
416	Joint 5 vo	Itage (float)	[V]							=		
448	Joint 6 vo	Itage (float)	[V]									
480	Joint 1 cu	rrent (float) [[A]							=		
512	Joint 2 cu	rrent (float) [[A]							=		
544	Joint 3 cu	rrent (float) [A]							=		
576	Joint 4 cu	rrent (float) [A]									
608	Joint 5 cu	rrent (float) [A]									
640	Joint 6 cu	rrent (float) [A]									
672	Joint 1 po	sition (float)[[°]									
704	Joint 2 po	sition (float)	[°]									
736	Joint 3 po	sition (float)	[°]							=		
768	Joint 4 po	sition (float)	[°]							7		
800	Joint 5 po	sition (float)	[°]							1		
832	Joint 6 po	sition (float)	[°]							=		
864	Joint 1 sp	eed (float) [°	/s]							1		
896	Joint 2 sp	eed (float) [°	/s]							7		
928	Joint 3 sp	eed (float) [°	/s]							1		
960	Joint 4 sp	Joint 4 speed (float) [°/s]										
992	Joint 5 sp	Joint 5 speed (float) [°/s]										
1024	Joint 6 sp	eed (float) [°	/s]							1		
1088		mperature (fl								=		
1120		mperature (fl								=		
1152		mperature (fl								+		

Transmissi	on type Lexi	um Cobot >	> External (Controller (I	R->P)					
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
1184	Joint 4 ten	nperature (fl	loat) [°C]							Joint parameters
1216	Joint 5 ten	nperature (fl	loat) [°C]							2_R->P_Joints
1248	Joint 6 ten	mperature (fl	loat) [°C]							172+48 Bytes
1280	Joint 1 tor	que (float) [l	Nm]							
1312	Joint 2 tor	que (float) [i	Nm]							
1344	Joint 3 tor									
1376	Joint 4 tor	que (float) [i	Nm]							
1408	Joint 5 tor	que (float) [i	Nm]							
1440	Joint 6 tor	que (float) [i	Nm]							
1472	Joint 1 ser	rvo error cod	de (int32)							
1504	Joint 2 sei	rvo error cod	de (int32)							
1536	Joint 3 ser	rvo error cod	de (int32)							
1568	Joint 4 sei	rvo error cod	de (int32)							
1600	Joint 5 sei	rvo error cod	de (int32)							
1632	Joint 6 sei	rvo error cod	de (int32)							
1664	Joint error	state (uint8	3)	Joint enable state	Joint collis	sion state (uint8)		Reten- tion	
1696	Reserved	(float) 48 By	ytes	<u>I</u>	1					
~										
2048	TCP posit	ion X (float)	[mm]							TCP and BASE parameters
2080	TCP posit	ion Y (float)	[mm]							3_R->P_TCP_
2112	TCP posit	ion Z (float)	[mm]							BASE
2144	TCP posit	ion RX (floa	t) [mm]							96+48 Bytes
2176	TCP posit	ion RY (floa	t) [mm]							
2208	TCP posit	ion RZ (floa	t) [mm]							
2240	TCP spee	d X (float) [r	nm/s]							
2272	TCP spee	d Y (float) [r	nm/s]							
2304	TCP spee	d Z (float) [n	nm/s]							
2336	TCP spee	d RX (float)	[mm/s]							
2368	TCP spee	d RY (float)	[mm/s]							
2432	TCP_OFF	SET_X (floa	at) [mm]							
2464	TCP_OFF	SET_Y (floa	at) [mm]							
2496	TCP_OFF	SET_Z (floa	at) [mm]							
2528	TCP_OFF	SET_RX (fl	oat) [mm]							
2560	TCP_OFF	SET_RY (fl	oat) [mm]							
2592	TCP_OFF	SET_RZ (fl	oat) [mm]							
2400	TCP spee	d RZ (float)	[mm/s]							
2624	BASE_OF	FSET_X (fl	oat) [mm]							
2656	BASE_OF	FSET_Y (fl	oat) [mm]							
2688	BASE_OF	FSET_Z (flo	oat) [mm]]

Bit	0 1 2~7 8~15 16 17 18 19~23 24~31	Unit Modules
2720	BASE_OFFSET_RX (float) [mm]	3_R->P_TCP_ BASE
2752	BASE_OFFSET_RY (float) [mm]	96+48 Bytes
2784	BASE_OFFSET_RZ (float) [mm]	50140 Bytes
2816	Reserved 48 Bytes	
~		
3200	Boolean register 0-31	Boolean output register
3232	Boolean register 32-63	DO 0~63 4_R->P_
3264	Reserved (4 Bytes)	DO 8+4 Bytes
3296	Integer register 0	Integer output
3328	Integer register 1	register AO 0~31
3360	Integer register 2	5_R->P_AO_INT
3392	Integer register 3	128 Bytes
3424	Integer register 4	
3456	Integer register 5	
3488	Integer register 6	
3520	Integer register 7	
3552	Integer register 8	
3584	Integer register 9	
3616	Integer register 10	
3648	Integer register 11	
3680	Integer register 12	
3712	Integer register 13	
3744	Integer register 14	
3776	Integer register 15	
3808	Integer register 16	
3840	Integer register 17	
3872	Integer register 18	
3904	Integer register 19	
3936	Integer register 20	
3968	Integer register 21	
4000	Integer register 22	
4032	Integer register 23	
4064	Integer register 24	
4096	Integer register 25	
4128	Integer register 26	
4160	Integer register 27	
4192	Integer register 28	
4224	Integer register 29	
4256	Integer register 30	
4288	Integer register 31	

Transmissio	on type Lexi	ium Cobot :	> External (Controller	(R->P)					
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
4320	Floating p	I	Floating point							
4352	Floating p	oint number	register 1							number output register AO 0~31
4384	Floating p	oint number	register 2							6_R->P_AO_
4416	Floating p		FLOAT							
4448	Floating p	_ 128 Bytes								
4480	Floating p	oint number	register 5							
4512	Floating p	oint number	register 6							
4544	Floating p	oint number	register 7							
4576	Floating p	oint number	register 8							
4608	Floating p	oint number	register 9							
4640	Floating p	oint number	register 10							
4672	Floating p	oint number	register 11							
4704	Floating p	oint number	register 12							
4736	Floating p	oint number	register 13							
4768	Floating p	oint number	register 14							
4800	Floating p	oint number	register 15							
4832	Floating p	oint number	register 16							
4864	Floating p	oint number	register 17							
4896	Floating p	oint number	register 18							
4928	Floating p	oint number	register 19							
4960	Floating p	oint number	register 20							
4992	Floating p	oint number	register 21							
5024	Floating p	oint number	register 22							
5056	Floating p	oint number	register 23							
5088	Floating p	oint number	register 24							
5120	Floating p	oint number	register 25							
5152	Floating p	oint number	register 26							
5184	Floating p	oint number	register 27							
5216	Floating p	oint number	register 28							
5248	Floating p	oint number	register 29							
5280	Floating p	oint number	register 30							
5312	Floating p	oint number	register 31							

EtherNet/IP I/O Address Table

Transm	ission type	Lexium Co	bot > Extern	al Controlle	er (R->P)					
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
0	Robot serial number (int32)									Robot state, safety–related
32	Servo vers	ion number	(int32)							settings
64	Power stateEnable stateRetentionRetention									1_R->P_Robot_ Safety
96	MOTION_ERRCODE (int32)									20 Bytes
128	Move mode	e (uint8)		Reduc- tion mode level	Emer- gency Stop	Protective stop	Soft limit state	Reten- tion	Reten- tion	
160	Joint 1 curr	rent (float) [/	A]							Joint parameters
192	Joint 2 curr	rent (float) [/	A]							2_R->P_Joints
224	Joint 3 curr	rent (float) [/	A]							124 Bytes + 20 Bytes
256	Joint 4 curi	rent (float) [/	A]							
288	Joint 5 curi	rent (float) [/	A]							
320	Joint 6 curr	rent (float) [/	A]							
352	Joint 1 pos	ition (float)[°]							
384	Joint 2 pos	ition (float)	[°]							
416	Joint 3 pos	ition (float)	[°]							
448	Joint 4 pos	ition (float)	[°]							
480	Joint 5 pos	ition (float)	[°]							
512	Joint 6 position (float) [°]									
544	Joint 1 spe	ed (float) [°/	/s]]
576	Joint 2 spe	ed (float) [°/	/s]							
608	Joint 3 spe	ed (float) [°/	/s]							7
640	Joint 4 spe	ed (float) [°/	/s]							
672	Joint 5 spe	ed (float) [°/	/s]							7
704	Joint 6 spe	ed (float) [°/	/s]							7
736	Joint 1 toro	ue (float) [N	Nm]							
768	Joint 2 toro	ue (float) [N	Nm]							
800	Joint 3 toro	ue (float) [N	Nm]							
832	Joint 4 toro	ue (float) [N	Nm]							
864	Joint 5 toro	ue (float) [N	Nm]							
896	Joint 6 toro	μue (float) [N	Nm]							
928	Joint 1 servo error code (int32)									1
960	Joint 2 serv	vo error cod	le (int32)							
992	Joint 3 serv	vo error cod	le (int32)							
1024	Joint 4 serv	vo error cod	le (int32)							
1056	Joint 5 serv	vo error cod	le (int32)							
1088	Joint 6 serv	vo error cod	le (int32)							
1120	Joint error	state (uint8))	Joint enable	Joint collis	sion state (uir	nt8)		Reten- tion	

Transm	ission typ	e Lexium C	obot > Ext	ernal Contro	oller (R->P)					
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
1152~- 1280	reserved	I 20 Bytes								Joint parameters
1200										2_R->P_Joints
										124 Bytes + 20 Bytes
1312	Sensor f	orce x (float) [N]							TCP parameters 3_R->P_TCP
1344	Sensor f	orce y (float) [N]							76 Bytes + 48
1376	Sensor f	orce z (float) [N]							Bytes
1408	Sensor t	orque rx (flo	at) [Nm]							
1440	Sensor t	orque ry (flo	at) [Nm]							
1472	Sensor t	orque rz (flo	at) [Nm]							
1504	TCP pos	sition X (float	t) [mm]							
1536	TCP pos	sition Y (float	t) [mm]							
1568	TCP pos	sition Z (float	i) [mm]							
1600	TCP pos	ition RX (flo	at) [mm]							
1632	TCP pos	sition RY (flo	at) [mm]							
1664	TCP pos	ition RZ (flo	at) [mm]							
1696	TCP_OF	FSET_X (flo	oat)[mm]							
1728	TCP_OF	FSET_Y (flo	oat)[mm]							
1760	TCP_OF	FSET_Z (flo	oat)[mm]							
1792	TCP_OF	FSET_RX (float)[mm]							
1824	TCP_OF	FSET_RY (float)[mm]							
1856	TCP_OF	FSET_RZ (float)[mm]							
1888	TCP line	ar speed V	(float) [mm/s	s]						
1920- ~2272	reserved	I 48 Bytes								
2304	Boolean	register 0-3	1							Boolean output
2336	Boolean	register 32-	63							register
2368	Reserve	d (4 Bytes)								DO 0~63 4_R- >P_DO
2400	Integer r	egister 0								8+4 Bytes Integer output
2432	Integer r									register AO 0~23
2464	<u> </u>	egister 2								5_R->P_AO_INT
2496		egister 3								96 Bytes
2528		egister 4								
2560	Integer r	egister 5								
2592		egister 6								
2624		egister 7								
2656	<u> </u>	egister 8								
2688	-	egister 9								
2720	Integer register 10									
2752	Integer register 11									
2784		egister 12								_

Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
2816	Integer reg			0 10	10		10	10 20	24 01	Integer output
2848	Integer reg									register AO 0~23
2880	Integer reg									5_R->P_AO_INT
2912	Integer reg									96 Bytes
2944	Integer reg									_
2976	Integer reg									
3008	Integer reg									
3040	Integer reg									_
3072	Integer reg									
3104	Integer reg									
3136	Integer reg									
3168			er register 0							Floating point
3200			er register 1							number output register
3232	Floating po	oint numbe	er register 2							AO 0~23 6_R-
3264	Floating po	oint numbe	er register 3							
3296	Floating po	oint numbe	er register 4							OAT
3328	Floating po	oint numbe	er register 5							96 Bytes
3360	Floating po	oint numbe	er register 6							
3392	Floating po	oint numbe	er register 7							
3424	Floating po	oint numbe	er register 8							
3456	Floating po	int numbe	er register 9							
3488	Floating po	int numbe	er register 10							
3520	Floating po	int numbe	er register 11							
3552	Floating po	int numbe	er register 12							
3584	Floating po	oint numbe	er register 13							
3616	Floating po	oint numbe	er register 14							
3648	Floating po	oint numbe	er register 15							
3680	Floating po	oint numbe	er register 16							
3712	Floating po	oint numbe	er register 17							
3744	Floating po	int numbe	er register 18							
3776	Floating po	int numbe	er register 19							
3808	Floating po	oint numbe	er register 20							
3840	Floating po	oint numbe	er register 21							
3872	Floating po	oint numbe	er register 22							
3904	Floating po	int numbe	er register 23							

Transm	nission typ	e External C	Controller >	Lexium Co	bot (P->R)					
Bit	0	1	2~7	8~15	16	17	18	19~23	24~31	Unit Modules
0	Boolean register 0-31								Boolean input	
32	Boolean	Boolean register 32-63								register DI 0~63
64	Reserved (4 Bytes)								1_P->R_DI 8+4 Bytes	
96	Integer register 0							Integer input register Al 0~23 2_P->R_Al_INT		
128	Integer register 1									
160	Integer register 2									
800	Integer register 22									96 Bytes
832	Integer register 23									
864	Floating point number register 0									Floating point
928	Floating	point numbe	r register 1							number input register
1568	Floating point number register 22									AI 0~23
1600	Floating	point numbe	er register 23	}						3_P>R_AI_ FLOAT
										96 Bytes

Further Information About the Manufacturer

What's in This Chapter

Contact Addresses	241
Product Training Courses	241

Contact Addresses

Manufacturer

Schneider Electric Automation GmbH

(Subsidiary of Schneider Electric Industries SAS FR-93500 Rueil Malmaison)

Schneiderplatz 1

97828 Marktheidenfeld, Germany

Phone: +49 9391 603 5000

Internet: www.se.com

Other Contacts

See the homepage for additional contact addresses:

Contact Center | Schneider Electric Global (se.com)

Product Training Courses

Product Training Courses

Schneider Electric offers a number of product training courses.

The Schneider Electric training instructors will help you take advantage of the extensive possibilities offered by the system.

See the website (www.se.com) for further information and the seminar schedule.

Glossary

F

Factory Pose: The factory pose describes the folding positions of the Lexium Cobot Arm in delivery condition.

Flange Center Point (FCP): Center of the outer contact surface of the tool flange of the Lexium Cobot Arm.

Н

Hand-Guided Mode: In hand-guided mode, also called drag mode or free-drive mode, the Lexium Cobot Arm is moved manually by hand.

Home Pose: The initial pose of the Lexium Cobot Arm. You can define the home pose in the software and reach the home pose through the Home button on the Control Stick.

M

Manual Operation: Moving the Lexium Cobot Arm manually using the Control Stick or the control elements in the manual operation interface of the software.

Modbus RTU: Modbus Remote Terminal Unit. Serial line connection by using Modbus communication.

0

Open Pose: Zero position pose for joint zeroing.

P

Pose: The Lexium Cobot pose includes the cartesian position X, Y, Z and the orientation RX, RY and RZ.

R

Roll-Pitch-Yaw (RPY): Special Euler angles (attitude angles) used to describe the orientation of the robot in three-dimensional space. Roll-Pitch-Yaw angles are used to express the orientation of the spherical wrist in robots. The orientation of the end-effector can be obtained by a combination of the roll-pitch-yaw angles.

S

Safety Control Board (SCB): Part of the Lexium Cobot Controller that is specifically intended for the safety-related functions of the Lexium Cobot. The Safety Control Board has its own firmware version, which is related to the firmware of the Lexium Cobot Controller.

Т

Tool Center Point (TCP): The Tool Center Point (TCP) is the part of the end effector mounted on the tool flange of the Lexium Cobot Arm that comes into contact with the workpiece. The TCP is used for the positioning of the robot in the Cartesian space and must be defined so that the Lexium Cobot Arm can move to the same position from different angles

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2024 Schneider Electric. All rights reserved.