SH3 Servo Motor

User Guide

0198441113987.08 05/2025

Legal Information

The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a non-exclusive and personal license to consult it on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof.

Table of Contents

Safety Information	5
About the Document	6
Introduction	10
Motor Family	10
Options and Accessories	
Nameplate	12
Type Code	14
Technical Data	16
General Characteristics	16
Environmental Conditions	18
Approved Servo Drives	
Dimensions for Motors with One-Cable Connection	
Dimensions for Motors with Two-Cable Connection	
Shaft Load	
Performance Data	
Encoder for Motors with One-Cable Connection	
Encoder for Motors with Two-Cable Connection	
Holding Brake	
Certifications	
Installation	
Electromagnetic Compatibility (EMC)	
Cables and Signals	
Cable Specifications for Motors with One-Cable Connection (SH3-	04
OMC)	65
Cable Specifications for Motors with Two-Cable Connection	
Mechanical Installation	
Before Mounting	
Mounting The Motor	
Compressed Air Connection for Motors with Two-Cable	
Connection	75
Electrical Installation	76
Connectors and Connector Assignments for Motors With One-Cable	
Connection (SH3 OMC)	76
Connectors and Connector Assignments for Motors With Two-Cable	
Connection	78
Power and Encoder Connection	81
Holding Brake Connection	84
Commissioning	85
Commissioning	85
Diagnostics and Troubleshooting	88
Mechanical Issues	88
Electrical Issues	88
Accessories and Spare Parts	89
Cables for Motors with One-Cable Connection (SH3 OMC)	89
Cables for Motors with Two-Cable Connection	89

	IP67 Kit	.90
Se	ervice, Maintenance, and Disposal	.91
	Maintenance	.91
	Replacing the Motor	.93
	Shipping, Storage, Disposal	.94
Gl	ossary	.95
Inc	dex	96

Safety Information

Important Information

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

A WARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

A CAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

0198441113987.08 5

About the Document

Document Scope

This document describes technical characteristics, installation, commissioning, and maintenance of the SH3 servo motor family.

The SH3 servo motor family consists of:

- Motors with one-cable connection (SH3-OMC)
- · Motors with two-cable connection

Validity Note

This document is valid for the standard products listed in the section Type Code, page 14.

The characteristics that are described in the present document, as well as those described in the documents included in the Related Documents section below, can be found online. To access the information online, go to the Schneider Electric home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If you see a difference between the document and online information, use the online information as your reference.

Product Related Information

The use and application of the information contained herein require expertise in the design and programming of automated control systems.

Only you, the user, machine builder or integrator, can be aware of all the conditions and factors present during installation and setup, operation, repair and maintenance of the machine or process.

You must also consider any applicable standards and/or regulations with respect to grounding of all equipment. Verify compliance with any safety information, different electrical requirements, and normative standards that apply to your machine or process in the use of this equipment.

Many components of the equipment, including the printed circuit board, operate with mains voltage, or present transformed high currents, and/or high voltages.

The motor itself generates voltage when the motor shaft is rotated.

▲ DANGER

ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Disconnect all power from all equipment including connected devices prior to removing any covers or doors, or installing or removing any accessories, hardware, cables, or wires.
- Place a "Do Not Turn On" or equivalent hazard label on all power switches and lock them in the non-energized position.
- Wait 15 minutes to allow the residual energy of the DC bus capacitors to discharge.
- Measure the voltage on the DC bus with a properly rated voltage sensing device and verify that the voltage is less than 42 Vdc.
- Do not assume that the DC bus is voltage-free when the DC bus LED is off.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- Do not create a short-circuit across the DC bus terminals or the DC bus capacitors.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

▲ DANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.

Failure to follow these instructions will result in death or serious injury.

If the power stage is disabled unintentionally, for example as a result of a power outage, errors or functions, the motor is no longer decelerated in a controlled way. Overload, errors or incorrect use may cause the holding brake to no longer operate properly and may result in premature wear.

AWARNING

UNINTENDED EQUIPMENT OPERATION

- Verify that movements without braking effect cannot cause injuries or equipment damage.
- Verify the function of the holding brake at regular intervals.
- Do not use the holding brake as a service brake.
- · Do not use the holding brake for safety-related purposes.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

0198441113987.08 7

AWARNING

LOSS OF CONTROL

- Perform a Failure Mode and Effects Analysis (FMEA), or equivalent risk analysis, of your application, and apply preventive and detective controls before implementation.
- Provide a fallback state for undesired control events or sequences.
- Provide separate or redundant control paths wherever required.
- Supply appropriate parameters, particularly for limits.
- Review the implications of transmission delays and take actions to mitigate them.
- Review the implications of communication link interruptions and take actions to mitigate them.
- Provide independent paths for control functions (for example, emergency stop, over-limit conditions, and error conditions) according to your risk assessment, and applicable codes and regulations.
- Apply local accident prevention and safety regulations and guidelines.¹
- Test each implementation of a system for proper operation before placing it into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

¹ For additional information, refer to NEMA ICS 1.1 (latest edition), Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control and to NEMA ICS 7.1 (latest edition), Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems or their equivalent governing your particular location.

Environmental Data

For product compliance and environmental information, refer to the Schneider Electric Environmental Data Program.

Available Languages of the Document

The document is available in these languages:

- English (0198441113987)
- French (0198441113988)
- German (0198441113986)
- Italian (0198441113989)
- Spanish (0198441113990)
- Chinese (0198441113991)

Information on Non-Inclusive or Insensitive Terminology

As a responsible, inclusive company, Schneider Electric is constantly updating its communications and products that contain non-inclusive or insensitive terminology. However, despite these efforts, our content may still contain terms that are deemed inappropriate by some customers.

Terminology Derived from Standards

The technical terms, terminology, symbols and the corresponding descriptions in the information contained herein, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may include, but is not limited to, terms such as safety, safety function, safe state, fault, fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard	Description			
IEC 61131-2:2007	Programmable controllers, part 2: Equipment requirements and tests.			
ISO 13849-1:2023	Safety of machinery: Safety related parts of control systems.			
	General principles for design.			
EN 61496-1:2020	Safety of machinery: Electro-sensitive protective equipment.			
	Part 1: General requirements and tests.			
ISO 12100:2010	Safety of machinery - General principles for design - Risk assessment and risk reduction			
EN 60204-1:2006	Safety of machinery - Electrical equipment of machines - Part 1: General requirements			
ISO 14119:2013	Safety of machinery - Interlocking devices associated with guards - Principles for design and selection			
ISO 13850:2015	Safety of machinery - Emergency stop - Principles for design			
IEC 62061:2021	Safety of machinery - Functional safety of safety-related electrical, electronic, and electronic programmable control systems			
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: General requirements.			
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Requirements for electrical/electronic/programmable electronic safety-related systems.			
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety-related systems: Software requirements.			
IEC 61784-3:2021	Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses - General rules and profile definitions.			
2006/42/EC	Machinery Directive			
2014/30/EU	Electromagnetic Compatibility Directive			
2014/35/EU	Low Voltage Directive			

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

Standard	Description
IEC 60034 series	Rotating electrical machines
IEC 61800 series	Adjustable speed electrical power drive systems
IEC 61158 series	Digital data communications for measurement and control – Fieldbus for use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

Introduction

Motor Family

General

The series SH3 servo motors are low-inertia AC synchronous servo motors designed for highly dynamic positioning tasks.

A drive system consists of the servo motor and the appropriate drive, page 20. Maximum performance requires the motor and drive to be adapted to each other.

Characteristics

The motors have the following features:

- Overload protection by integrated temperature sensor (evaluated by the servo drive)
- · Low moment of inertia
- · High power density
- Excellent dynamics
- · High overload capability
- Broad torque range
- Special winding for low phase currents
- · Motor connection via circular connectors
- · Easy commissioning via electronic nameplate in the encoder
- · Low maintenance

Cable Connection

The motors are available in two connection variants.

Motors with one-cable connection (SH3-OMC):

 Motor phases, holding brake, and HIPERFACE® DSL encoder connected via the hybrid cable

Motors with two-cable connection:

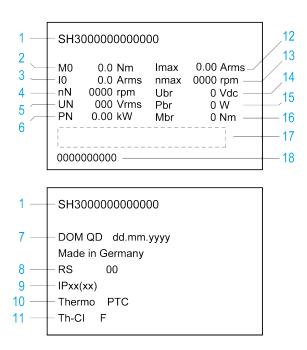
- Motor phases, holding brake, and temperature sensor connected via the motor cable
- HIPERFACE® SinCos encoder connected via the encoder cable

Options and Accessories

Options

The motors are available with various options such as:

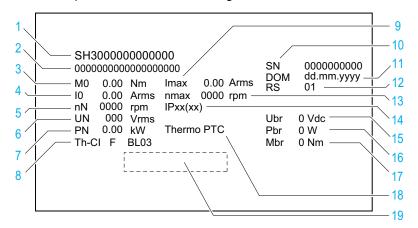
- Various encoder systems
- Holding brake
- · Various shaft versions
- · Various degrees of protection
- Various lengths
- · Various sizes
- Various winding versions
- · Various connection versions


Accessories

Refer to the section Accessories and Spare Parts, page 89.

Nameplate

SH3040


The nameplate contains the following data:

1	Commercial reference, see Type Code, page 14			
2	Continuous stall torque			
3	Continuous stall current			
4	Nominal speed of rotation			
5	Maximum nominal value of supply voltage			
6	Nominal power			
7	Date of manufacture			
8	Hardware version			
9	Degree of protection (housing without shaft bushing)			
10	Temperature sensor			
11	Thermal class			
12	Maximum current			
13	Maximum speed of rotation			
14	Nominal voltage of holding brake			
15	Nominal power (electrical pull-in power) of holding brake			
16	Holding torque of holding brake			
17	Barcode			
18	Serial number			

SH3055 ... SH3205

The nameplate contains the following data:

1	Commercial reference, see Type Code, page 14			
2	Identification number			
3	Continuous stall torque			
4	Continuous stall current			
5	Nominal speed of rotation			
6	Maximum nominal value of supply voltage			
7	Nominal power			
8	Thermal class			
9	Maximum Current			
10	Serial number			
11	Date of manufacture			
12	Hardware version			
13	Maximum speed of rotation			
14	Degree of protection (housing without shaft bushing)			
15	Nominal voltage of holding brake			
16	Nominal power (electrical pull-in power) of holding brake			
17	Holding torque of holding brake			
18	Temperature sensor			
19	Barcode			

Type Code

Type Code

Item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Type code (example)	S	Н	3	0	7	0	1	Р	1	В	F	4	1	0	0

Item	Meaning
1 3	Product family
	SH3 = Synchronous servo motor - low moment of inertia
4 6	Size (housing)
	040 = 40 mm flange
	055 = 55 mm flange
	070 = 70 mm flange
	100 = 100 mm flange
	140 = 140 mm flange
	205 = 205 mm flange
7	Length
	1 = 1 stack
	2 = 2 stacks
	3 = 3 stacks
	4 = 4 stacks
8	Winding
	M = Optimized in terms of high torque
	P = Optimized in terms of torque and speed of rotation
	S = Customized version
9	Shaft
	0 = Smooth shaft
	1 = Parallel key
10	Encoder system
	1 = Absolute singleturn HIPERFACE SinCos 128 periods per revolution SKS36
	2 = Absolute multiturn HIPERFACE SinCos 128 periods per revolution SKM36
	6 = Absolute singleturn HIPERFACE SinCos 16 periods per revolution SEK37
	7 = Absolute multiturn HIPERFACE SinCos 16 periods per revolution SEL37
	A = Absolute singleturn HIPERFACE DSL 18 bit per revolution EKS36
	B = Absolute multiturn HIPERFACE DSL 18 bit per revolution EKM36
	C = Absolute singleturn HIPERFACE DSL 15 bit per revolution EES37
	D = Absolute multiturn HIPERFACE DSL 15 bit per revolution EEM37
11	Holding brake
	A = Without holding brake
	F = With holding brake
12	Connection version
	1 = Two-cable connection, straight connector
	2 = Two-cable connection, angular connector 90°, can be rotated

Item	Meaning			
	3 = One-cable connection (SH3-OMC), straight connector 4 = One-cable connection (SH3-OMC), angular connector 90°, can be rotated			
13	Degree of protection shaft and housing - type of cooling(1)			
	0 = Shaft bushing IP54 without shaft sealing ring, housing IP65, convection			
	1 = Shaft bushing IP65 with shaft sealing ring, housing IP65, convection			
	2 = Shaft bushing IP65 with shaft sealing ring, housing IP67, convection			
14 15	Versions			
	00 = Standard			

(1) In the case of mounting position IM V3 (shaft vertical, shaft end up), the shaft bushing only has degree of protection IP50. The degree of protection relates to the motor itself, not to mounted components such as a gearbox.

If you have questions concerning the type code, contact your Schneider Electric representative.

Designation Customized Version

In the case of a customized version, position 8 of the type code is an "S". The subsequent number defines the customized version. Example: SH30551S0000001

If you have questions concerning customized versions, contact your local Schneider Electric service representative.

0198441113987.08 15

Technical Data

General Characteristics

Overview

Characteristic	Value	Standard
Motor type	AC synchronous servo motor	-
Thermal class	F (155 °C)	As per IEC 60034-1
Vibration grade	A	As per IEC 60034-14
Test voltage	> 2400 Vac	As per IEC 60034-1
Perpendicularity	normal class	As per IEC 60072-1, DIN 42955
Housing color	Black RAL 9005	-
Overvoltage category	III	As per IEC 61800-5-1
Protection class ⁽¹⁾	I	As per IEC 61140, EN 50178

⁽¹⁾ The internal circuits of the holding brake, temperature sensor and encoder meet PELV requirements.

Service Life

Bearing service life	Unit	Value	
Nominal bearing service life L _{10h} (1)	h	20000	
(1) Operating hours at a probability of failure of 10%			

The service life of the motors when operated correctly is limited primarily by the service life of the bearing (ball bearing).

The following operating conditions significantly reduce the service life:

- Rotary movements exclusively within a fixed angle of <100°
- Operation under vibration load >20 m/s²
- · Allowing sealing rings to run dry
- Contact of the seals with aggressive substances
- Installation altitude >1000 m (3281 ft) above mean sea level

Compressed Air

The compressed air generates a permanent overpressure inside the motor. This overpressure inside the motor is used to obtain degree of protection IP67.

Compressed air must also be available when the system is switched off, for example to maintain the required degree of protection during cleaning work. When the compressed air is switched off, the degree of protection is decreased to IP65. The degree of protection only relates to the motor itself, not to mounted components such as, for example, a gearbox.

Further, other relevant circumstances such as mounting position and accessories applied to the product are relevant to the degree of protection once the motor is installed.

Characteristics of the compressed air:

Characteristic	Unit	Value
Nominal pressure	bar	0.1 0.3
	(psi)	(1.45 4.35)
Maximum air pressure	bar	0.4
	(psi)	(5.8)
Permissible humidity	%	20 30
Other properties of the compressed air		Free from dust, free from oil

See Compressed Air Connection, page 75 for further details.

Tightening Torque and Property Class of Screws

Screw	Unit	Value
Tightening torque of housing screws M3	Nm (lb•in)	1 (8.85)
Tightening torque of housing screws M4	Nm (lb•in)	1.5 (13.28)
Tightening torque of housing screws M5	Nm (lb•in)	5 (44.3)
Tightening torque protective ground conductor M3 (SH3040)	Nm (lb•in)	0.9 (7.97)
Tightening torque protective ground conductor M4 (SH3055, SH3070, SH3100, SH3140)	Nm (lb•in)	2.9 (25.7)
Tightening torque protective ground conductor M6 (SH3205)	Nm (lb•in)	9.9 (87.3)
Property class of the screws	-	8.8

Environmental Conditions

Conditions for Operation

Characteristic	Unit	Value
Class as per IEC 60721-3-3	-	3K3, 3Z12, 3Z2, 3B2, 3C1
Ambient temperature ¹⁾ (no icing, non-condensing)	°C	-20 40
	(°F)	(-4 104)
Ambient temperature with current derating of 1% per °C (per	°C	40 60
1.8 °F) ⁽¹⁾	(°F)	(104 140)
Relative humidity (non-condensing)	%	5 85
Installation altitude ⁽²⁾	m	<1000
	(ft)	(<3281)
Installation altitude with current reduction of 1% per 100 m	m	1000 3000
(328 ft) at an altitude of more than 1000 m (3281 ft) ⁽²⁾		(3281 9843)

imit values with flanged motor. See Performance Data, page 40 for the conditions.

Conditions for Transportation and Storage

The environment during transportation and storage must be dry and free from dust.

The storage time is primarily limited by the service life of the lubricants in the bearings. Do not store the product for more than 36 months and periodically operate the motor.

If the holding brake is not used for an extended period of time, parts of the holding brake may corrode. Corrosion reduces the holding torque. See Inspecting/ Breaking In the Holding Brake, page 92.

Characteristic	Unit	Value
Temperature	°C	-40 70
	(°F)	(-40 158)
Relative humidity (non-condensing)	%	≤75
Set of class combinations as per IEC 60721-3-2		IE 21

Vibration and Shock

For SH3040 ... SH3140

Characteristic	Value
Vibration, sinusoidal	Type test with 10 runs as per IEC 60068-2-6
	0.15 mm (10 60 Hz)
	20 m/s² (60 500 Hz)
Shock, semi-sinusoidal	Type test with 3 shocks in each direction as per IEC 60068-2-27
	150 m/s² (11 ms)

⁽²⁾ The installation altitude is defined in terms of altitude above mean sea level.

For SH3205

Characteristic	Value
Vibration, sinusoidal	Type test with 10 runs as per IEC 60068-2-6
	0.35 mm (10 60 Hz)
	50 m/s ² (60 150 Hz)
Continuous shock	Type test with 3 shocks in each direction as per IEC 60068-2-29
	200 m/s ² (6 ms)

Compatibility with Foreign Substances

The motor has been tested for compatibility with many known substances and with the latest available knowledge. Nonetheless, you must perform a compatibility test prior to using a foreign substance.

Degree of Protection

Degree of protection as per IEC 60034-5.

The total degree of protection is determined by the component with the lowest degree of protection.

Characteristic	Value
Degree of protection of shaft bushing ⁽¹⁾ without shaft sealing ring	IP54
Degree of protection of shaft bushing ⁽¹⁾ with shaft sealing ring	IP65
Degree of protection of housing without connected compressed air	IP65
Degree of protection of housing with connected compressed air	IP67
(4) In the case of manuating manifold (MAN/O) (about continuing about and con), the ca	bether the property of the transfer of the transfer of

(1) In the case of mounting position IM V3 (shaft vertical, shaft end up), the shaft bushing only has degree of protection IP50. The degree of protection relates to the motor itself, not to mounted components such as a gearbox.

Optional shaft sealing ring:

- The maximum speed of rotation is limited to 6000 rpm.
- · The shaft sealing ring is factory-pre-lubricated.
- If the seals run dry, this increases friction and greatly reduces the service life of the sealing rings.

Approved Servo Drives

Overview

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

AWARNING

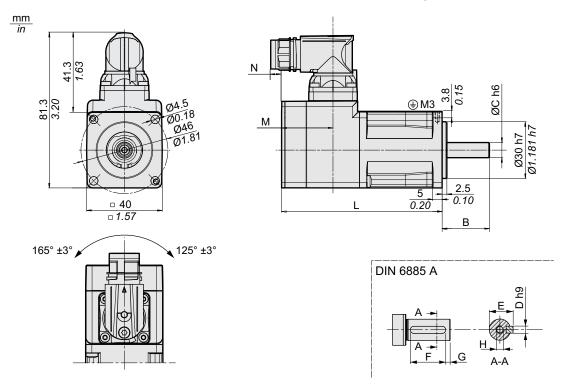
UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

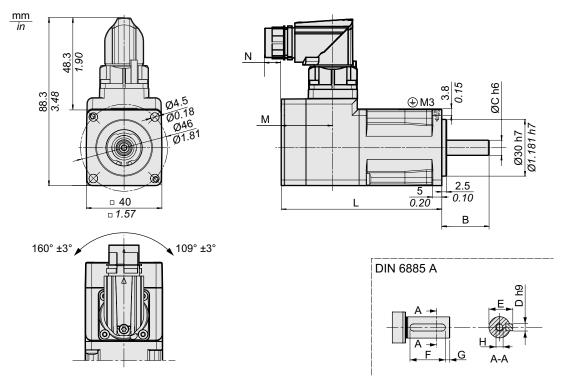
The motor may be operated with the following servo drives:

Servo drive	Servo motor with one- cable connection	Servo motor with two- cable connection
LXM52	-	✓
LXM62D•••C, LXM62D•••D, LXM62D•••G	√ (with hardware version ≥RS10)	✓
LXM62D•••E, LXM62D•••F	-	✓
✓ Approved		
- Not approved		

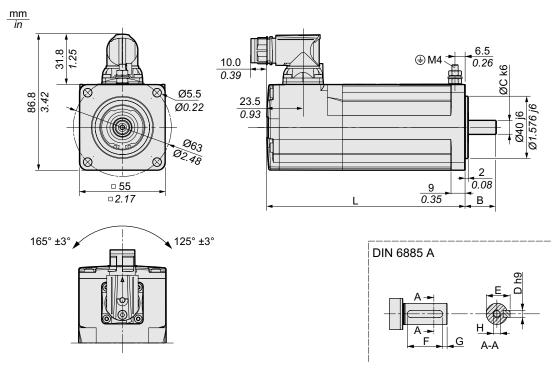

When selecting, refer to the servo drive type and the level of mains voltage to select an appropriate servo drive product.

In accordance with our continual introduction of new product, contact your Schneider Electric representative for additional compatible servo drive products as they become available.

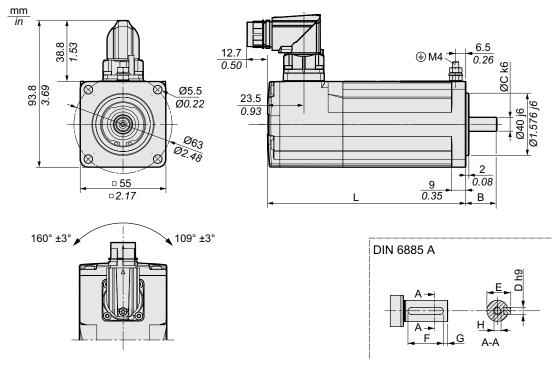
Dimensions for Motors with One-Cable Connection


SH3040

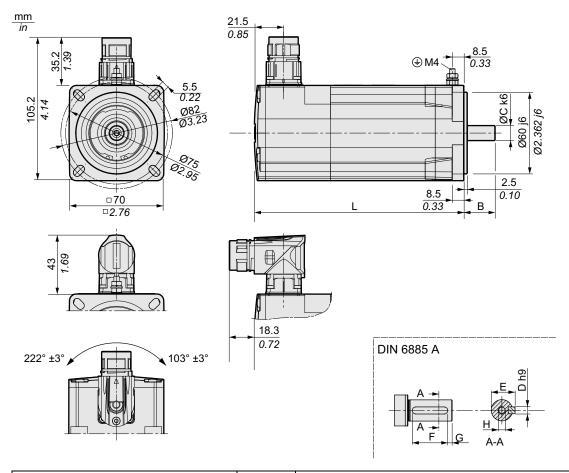
Dimensions with hardware version ≥RS02:


Ch	Characteristic		Value	
			SH30401	SH30402
L	Length without holding brake	mm (in)	84.9 (3.34)	104.9 (4.13)
L	Length with holding brake	mm (in)	110.9 (4.37)	130.9 (5.15)
М	Distance without holding brake	mm (in)	27.4 (1.08)	27.4 (1.08)
M	Distance with holding brake	mm (in)	35.9 (1.41)	35.9 (1.41)
N	Distance without holding brake	mm (in)	6 (0.24)	6 (0.24)
N	Distance with holding brake	mm (in)	-2.5 (-0.1)	-2.5 (-0.1)
В	Shaft length	mm (in)	25 (0.98)	25 (0.98)
С	Shaft diameter	mm (in)	8 (0.31)	8 (0.31)
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)
E	Shaft width with parallel key	mm (in)	9.2 (0.36)	9.2 (0.36)
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)
Н	Female thread of shaft		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12

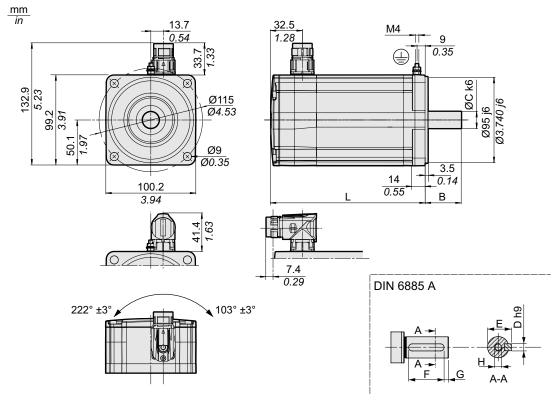
Dimensions with hardware version <RS02:


Ch	Characteristic		Value	
			SH30401	SH30402
L	Length without holding brake	mm (in)	84.9 (3.34)	104.9 (4.13)
L	Length with holding brake	mm (in)	110.9 (4.37)	130.9 (5.15)
М	Distance without holding brake	mm (in)	27.4 (1.08)	27.4 (1.08)
М	Distance with holding brake	mm (in)	35.9 (1.41)	35.9 (1.41)
N	Distance without holding brake	mm (in)	8.9 (0.35)	8.9 (0.35)
N	Distance with holding brake	mm (in)	0.4 (0.02)	0.4 (0.02)
В	Shaft length	mm (in)	25 (0.98)	25 (0.98)
С	Shaft diameter	mm (in)	8 (0.31)	8 (0.31)
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)
Е	Shaft width with parallel key	mm (in)	9.2 (0.36)	9.2 (0.36)
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)
Н	Female thread of shaft		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12

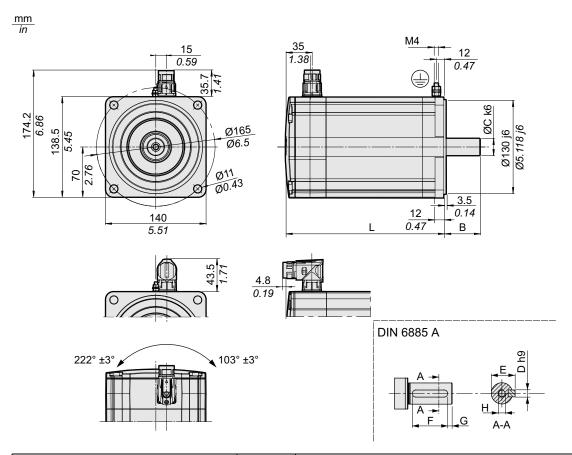
Dimensions with hardware version ≥RS02:



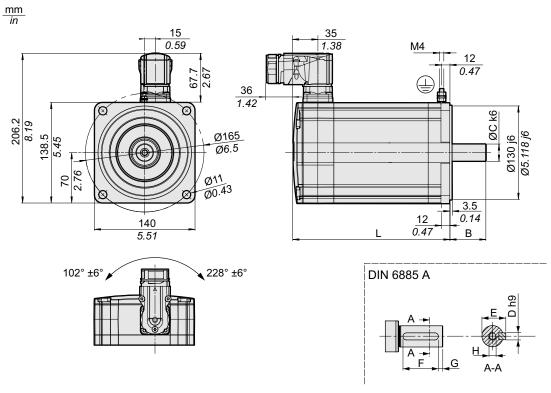
Characteristic		Unit	Value		
			SH30551	SH30552	SH30553
L	Length without holding brake	mm (in)	132.5 (5.22)	154.5 (6.08)	176.5 (6.95)
L	Length with holding brake	mm (in)	159 (6.26)	181 (7.13)	203 (7.99)
В	Shaft length	mm (in)	20 (0.79)	20 (0.79)	20 (0.79)
С	Shaft diameter	mm (in)	9 (0.35)	9 (0.35)	9 (0.35)
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)	3 (0.12)
E	Shaft width with parallel key	mm (in)	10.2 (0.4)	10.2 (0.4)	10.2 (0.4)
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)	12 (0.47)
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)	4 (0.16)
Н	Female thread of shaft		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12


Dimensions with hardware version <RS02:

Ch	Characteristic		Value		
			SH30551	SH30552	SH30553
L	Length without holding brake	mm (in)	132.5 (5.22)	154.5 (6.08)	176.5 (6.95)
L	Length with holding brake	mm (in)	159 (6.26)	181 (7.13)	203 (7.99)
В	Shaft length	mm (in)	20 (0.79)	20 (0.79)	20 (0.79)
С	Shaft diameter	mm (in)	9 (0.35)	9 (0.35)	9 (0.35)
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)	3 (0.12)
E	Shaft width with parallel key	mm (in)	10.2 (0.4)	10.2 (0.4)	10.2 (0.4)
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)	12 (0.47)
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)	4 (0.16)
Н	Female thread of shaft		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12

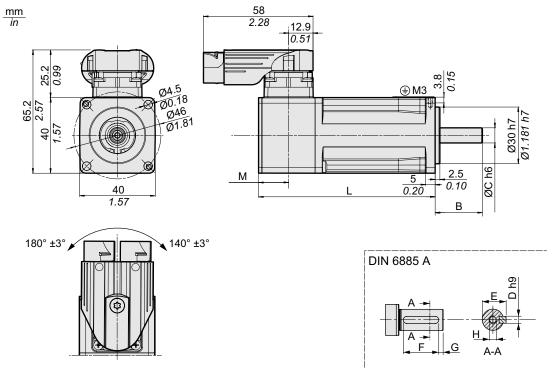


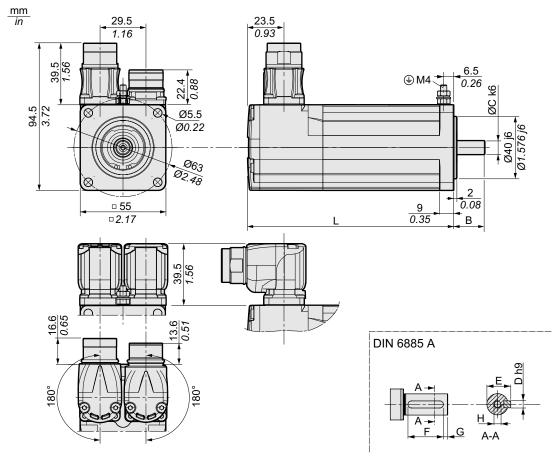
Ch	Characteristic		Value		
			SH30701	SH30702	SH30703
L	Length without holding brake	mm (in)	154 (6.06)	187 (7.36)	220 (8.66)
L	Length with holding brake	mm (in)	180 (7.09)	213 (8.39)	246 (9.69)
В	Shaft length	mm (in)	23 (0.91)	23 (0.91)	30 (1.18)
С	Shaft diameter	mm (in)	11 (0.43)	11 (0.43)	14 (0.55)
D	Width of parallel key	mm (in)	4 (0.16)	4 (0.16)	5 (0.2)
E	Shaft width with parallel key	mm (in)	12.5 (0.49)	12.5 (0.49)	16 (0.63)
F	Length of parallel key	mm (in)	18 (0.71)	18 (0.71)	20 (0.79)
G	Distance parallel key to shaft end	mm (in)	2.5 (0.1)	2.5 (0.1)	5 (0.2)
Н	Female thread of shaft		DIN 332-D M4	DIN 332-D M4	DIN 332-D M5
	Parallel key		DIN 6885-A4x4x18	DIN 6885-A4x4x18	DIN 6885-A4x4x20


Ch	Characteristic		Value				
			SH31001	SH31002	SH31003	SH31004	
L	Length without holding brake	mm (in)	168.5 (6.63)	204.5 (8.05)	240.5 (9.47)	276.5 (10.89)	
L	Length with holding brake	mm (in)	199.5 (7.85)	235.5 (9.27)	271.5 (10.69)	307.5 (12.11)	
В	Shaft length	mm (in)	40 (1.57)	40 (1.57)	40 (1.57)	50 (1.97)	
С	Shaft diameter	mm (in)	19 (0.75)	19 (0.75)	19 (0.75)	24 (0.94)	
D	Width of parallel key	mm (in)	6 (0.24)	6 (0.24)	6 (0.24)	8 (0.31)	
Е	Shaft width with parallel key	mm (in)	21.5 (0.85)	21.5 (0.85)	21.5 (0.85)	27 (1.06)	
F	Length of parallel key	mm (in)	30 (1.18)	30 (1.18)	30 (1.18)	40 (1.57)	
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	5 (0.2)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8	
	Parallel key		DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A8x7x40	

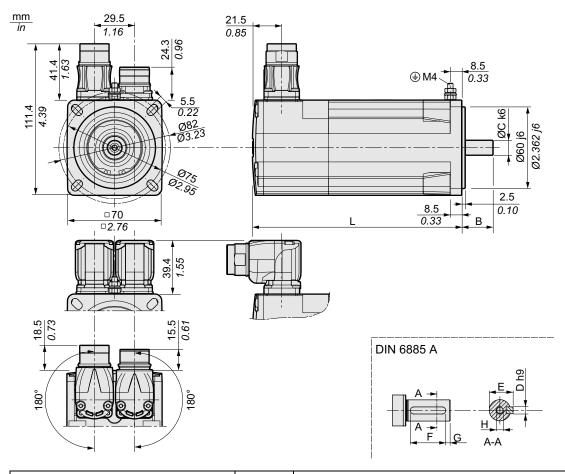
SH31401 and SH31402

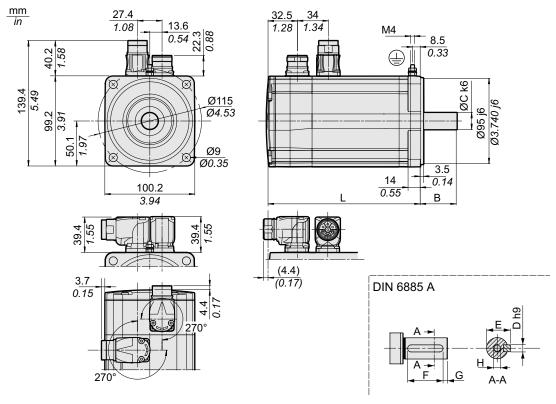
Ch	Characteristic		Value		
			SH31401	SH31402	
L	Length without holding brake	mm (in)	217.5 (8.56)	272.5 (10.73)	
L	Length with holding brake	mm (in)	255.5 (10.06)	310.5 (12.22)	
В	Shaft length	mm (in)	50 (1.97)	50 (1.97)	
С	Shaft diameter	mm (in)	24 (0.94)	24 (0.94)	
D	Width of parallel key	mm (in)	8 (0.31)	8 (0.31)	
Е	Shaft width with parallel key	mm (in)	27 (1.06)	27 (1.06)	
F	Length of parallel key	mm (in)	40 (1.57)	40 (1.57)	
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M8	DIN 332-D M8	
	Parallel key		DIN 6885-A8x7x40	DIN 6885-A8x7x40	


SH31403 and SH31404

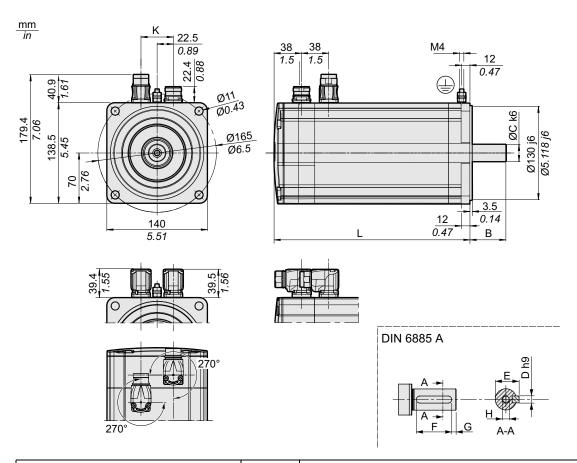

Ch	Characteristic		Value		
			SH31403	SH31404	
L	Length without holding brake	mm (in)	327.5 (12.89)	382.5 (15.06)	
L	Length with holding brake	mm (in)	365.5 (14.39)	420.5 (16.56)	
В	Shaft length	mm (in)	50 (1.97)	50 (1.97)	
С	Shaft diameter	mm (in)	24 (0.94)	24 (0.94)	
D	Width of parallel key	mm (in)	8 (0.31)	8 (0.31)	
Е	Shaft width with parallel key	mm (in)	27 (1.06)	27 (1.06)	
F	Length of parallel key	mm (in)	40 (1.57)	40 (1.57)	
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M8	DIN 332-D M8	
	Parallel key		DIN 6885-A8x7x40	DIN 6885-A8x7x40	

Dimensions for Motors with Two-Cable Connection

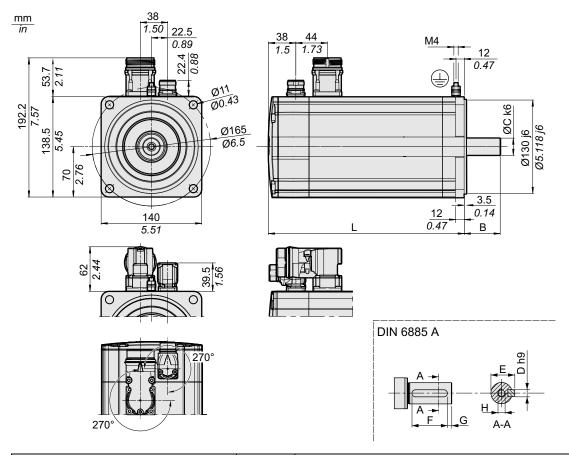

SH3040


Ch	Characteristic		Value		
			SH30401	SH30402	
L	Length without holding brake	mm (in)	73.4 (2.89)	93.4 (3.68)	
L	Length with holding brake	mm (in)	99.4 (3.91)	119.4 (4.7)	
М	Distance without holding brake	mm (in)	15.9 (0.63)	15.9 (0.63)	
М	Distance with holding brake	mm (in)	24.4 (24.4)	24.4 (24.4)	
В	Shaft length	mm (in)	25 (0.98)	25 (0.98)	
С	Shaft diameter	mm (in)	8 (0.31)	8 (0.31)	
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)	
Е	Shaft width with parallel key	mm (in)	9.2 (0.36)	9.2 (0.36)	
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)	
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)	
Н	Female thread of shaft		DIN 332 DS M3 x 9	DIN 332 DS M3 x 9	
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12	

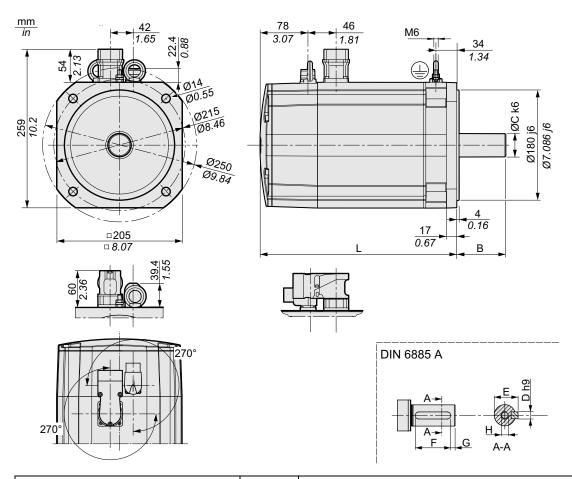
Ch	Characteristic		Value			
			SH30551	SH30552	SH30553	
L	Length without holding brake	mm (in)	132.5 (5.22)	154.4 (6.08)	176.5 (6.95)	
L	Length with holding brake	mm (in)	159 (6.26)	181 (7.13)	203 (7.99)	
В	Shaft length	mm (in)	20 (0.79)	20 (0.79)	20 (0.79)	
С	Shaft diameter	mm (in)	9 (0.35)	9 (0.35)	9 (0.35)	
D	Width of parallel key	mm (in)	3 (0.12)	3 (0.12)	3 (0.12)	
Е	Shaft width with parallel key	mm (in)	10.2 (0.4)	10.2 (0.4)	10.2 (0.4)	
F	Length of parallel key	mm (in)	12 (0.47)	12 (0.47)	12 (0.47)	
G	Distance parallel key to shaft end	mm (in)	4 (0.16)	4 (0.16)	4 (0.16)	
Н	Female thread of shaft		DIN 332-D M3	DIN 332-D M3	DIN 332-D M3	
	Parallel key		DIN 6885-A3x3x12	DIN 6885-A3x3x12	DIN 6885-A3x3x12	



Ch	Characteristic		Value			
			SH30701	SH30702	SH30703	
L	Length without holding brake	mm (in)	154 (6.06)	187 (7.36)	220 (8.66)	
L	Length with holding brake	mm (in)	180 (7.09)	213 (8.39)	254 (10)	
В	Shaft length	mm (in)	23 (0.91)	23 (0.91)	30 (1.18)	
С	Shaft diameter	mm (in)	11 (0.43)	11 (0.43)	14 (0.55)	
D	Width of parallel key	mm (in)	4 (0.16)	4 (0.16)	5 (0.2)	
E	Shaft width with parallel key	mm (in)	12.5 (0.49)	12.5 (0.49)	16 (0.63)	
F	Length of parallel key	mm (in)	18 (0.71)	18 (0.71)	20 (0.79)	
G	Distance parallel key to shaft end	mm (in)	2.5 (0.1)	2.5 (0.1)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M4	DIN 332-D M4	DIN 332-D M5	
	Parallel key		DIN 6885-A4x4x18	DIN 6885-A4x4x18	DIN 6885-A4x4x20	


Ch	Characteristic		Value			
			SH31001	SH31002	SH31003	SH31004
L	Length without holding brake	mm (in)	168.5 (6.63)	204.5 (8.05)	240.5 (9.47)	276.5 (10.89)
L	Length with holding brake	mm (in)	199.5 (7.85)	235.5 (9.27)	271.5 (10.69)	307.5 (12.11)
В	Shaft length	mm (in)	40 (1.57)	40 (1.57)	40 (1.57)	50 (1.97)
С	Shaft diameter	mm (in)	19 (0.75)	19 (0.75)	19 (0.75)	24 (0.94)
D	Width of parallel key	mm (in)	6 (0.24)	6 (0.24)	6 (0.24)	8 (0.31)
Е	Shaft width with parallel key	mm (in)	21.5 (0.85)	21.5 (0.85)	21.5 (0.85)	27 (1.06)
F	Length of parallel key	mm (in)	30 (1.18)	30 (1.18)	30 (1.18)	40 (1.57)
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	5 (0.2)	5 (0.2)
Н	Female thread of shaft		DIN 332-D M6	DIN 332-D M6	DIN 332-D M6	DIN 332-D M8
	Parallel key		DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A6x6x30	DIN 6885- A8x7x40

SH31401 and SH31402



Ch	Characteristic		Value		
			SH31401	SH31402	
L	Length without holding brake	mm (in)	217.5 (8.56)	272.5 (10.73)	
L	Length with holding brake	mm (in)	255.5 (10.06)	310.5 (12.22)	
В	Shaft length	mm (in)	50 (1.97)	50 (1.97)	
С	Shaft diameter	mm (in)	24 (0.94)	24 (0.94)	
D	Width of parallel key	mm (in)	8 (0.31)	8 (0.31)	
Е	Shaft width with parallel key	mm (in)	27 (1.06)	27 (1.06)	
F	Length of parallel key	mm (in)	40 (1.57)	40 (1.57)	
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M8	DIN 332-D M8	
K	Connector distance without holding brake	mm (in)	45 (1.77)	45 (1.77)	
K	Connector distance with holding brake	mm (in)	38 (1.5)	38 (1.5)	
	Parallel key		DIN 6885-A8x7x40	DIN 6885-A8x7x40	

SH31403 and SH31404

Ch	Characteristic		Value		
			SH31403	SH31404	
L	Length without holding brake	mm (in)	327.5 (12.89)	382.5 (15.06)	
L	Length with holding brake	mm (in)	365.5 (14.39)	420.5 (16.56)	
В	Shaft length	mm (in)	50 (1.97)	50 (1.97)	
С	Shaft diameter	mm (in)	24 (0.94)	24 (0.94)	
D	Width of parallel key	mm (in)	8 (0.31)	8 (0.31)	
E	Shaft width with parallel key	mm (in)	27 (1.06)	27 (1.06)	
F	Length of parallel key	mm (in)	40 (1.57)	40 (1.57)	
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	
Н	Female thread of shaft		DIN 332-D M8	DIN 332-D M8	
	Parallel key		DIN 6885-A8x7x40	DIN 6885-A8x7x40	

Characteristic		Unit	Value				
			SH32051	SH32052	SH32053		
L	Length without holding brake	mm (in)	321 (12.64)	405 (15.94)	489 (19.25)		
L	Length with holding brake	mm (in)	370.5 (14.59)	454.5 (17.89)	538.5 (21.2)		
В	Shaft length	mm (in)	80 (3.15)	80 (3.15)	80 (3.15)		
С	Shaft diameter	mm (in)	38 (1.5)	38 (1.5)	38 (1.5)		
D	Width of parallel key	mm (in)	10 (0.39)	10 (0.39)	10 (0.39)		
E	Shaft width with parallel key	mm (in)	41 (1.61)	41 (1.61)	41 (1.61)		
F	Length of parallel key	mm (in)	70 (2.76)	70 (2.76)	70 (2.76)		
G	Distance parallel key to shaft end	mm (in)	5 (0.2)	5 (0.2)	5 (0.2)		
Н	Female thread of shaft		DIN 332-D M12	DIN 332-D M12	DIN 332-D M12		
	Parallel key		DIN 6885-A10x8x70	DIN 6885-A10x8x70	DIN 6885-A10x8x70		

0198441113987.08 35

Shaft Load

General

If the maximum permissible forces at the motor shaft are exceeded, this will result in premature wear of the bearing or shaft breakage.

▲WARNING

UNINTENDED EQUIPMENT OPERATION DUE TO MECHANICAL DAMAGE TO THE MOTOR

- Do not exceed the maximum permissible axial and radial forces at the motor shaft.
- · Protect the motor shaft from impact.
- Do not exceed the maximum permissible axial force when pressing components onto the motor shaft.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

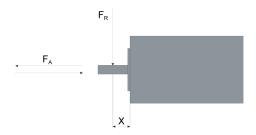
Force for Pressing On

The force applied during pressing on must not exceed the maximum permissible axial force. Applying assembly paste to the shaft and the component to be mounted reduces friction and mechanical impact on the surfaces.

If the shaft has a thread, use it to press on the component to be mounted. This way there is no axial force acting on the bearing.

It is also possible to shrink-fit, clamp or glue the component to be mounted.

The following table shows the maximum permissible axial force F_A at standstill.


Characteristic	Unit	Value						
		SH3040	SH3055	SH3070	SH3100	SH3140	SH3205	
Maximum axial force F _A at	N	20	40	80	160	300	740	
standstill	(lbf)	(4.5)	(9)	(18)	(36)	(65)	(165)	

Shaft Load

The following conditions apply:

- The permissible force applied during pressing on must not be exceeded
- · Radial and axial limit loads must not be applied simultaneously
- Nominal bearing service life in operating hours at a probability of failure of 10% (L_{10h} = 20000 hours)
- Mean speed of rotation n = 4000 rpm
- Ambient temperature = 40 °C (104 °F)
- Peak torque = Duty types S3 S8, 10% duty cycle
- Nominal torque = Duty type S1, 100% duty cycle

Shaft load

The point of application of the forces depends on the motor size:

Characteristic	Unit	Value						
		SH3040	SH3055	SH30701, SH30702	SH30703	SH31001, SH31002, SH31003	SH31004, SH3140	SH3205
Value for X	mm	12.5	10	11.5	15	20	25	40
	(in)	(0.49)	(0.39)	(0.45)	(0.59)	(0.76)	(0.98)	(1.57)

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3040:

Speed of	Unit	Value			
rotation		SH30401		SH30402	
		F _R	FA	F _R	F _A
1000 rpm	N	130	26	145	29
	(lbf)	(29)	(6)	(32)	(7)
2000 rpm	N	105	21	115	23
	(lbf)	(24)	(5)	(26)	(5)
3000 rpm	N	90	18	100	20
	(lbf)	(20)	(4)	(22)	(4)
4000 rpm	N	85	17	90	18
	(lbf)	(19)	(4)	(20)	(4)
5000 rpm	N	76	16	85	17
	(lbf)	(17)	(4)	(19)	(4)
6000 rpm	N	72	15	80	16
	(lbf)	(16)	(3)	(80)	(4)
7000 rpm	N	68	14	76	15
	(lbf)	(15)	(3)	(17)	(3)
8000 rpm	N	65	13	72	14
	(lbf)	(15)	(3)	(16)	(3)
9000 rpm	N	63	12	70	13
	(lbf)	(14)	(3)	(16)	(3)
10000 rpm	N	60	11	67	12
	(lbf)	(13)	(2)	(15)	(3)

0198441113987.08

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3055:

Speed of rotation Un	Unit	Value	Value						
		SH30551		SH30552		SH30553			
		F _R	FA	F _R	FA	F _R	FA		
1000 rpm	N	340	68	370	74	390	78		
	(lbf)	(76)	(15)	(83)	(17)	(88)	(18)		
2000 rpm	N	270	54	290	58	310	62		
	(lbf)	(61)	(12)	(65)	(13)	(70)	(14)		
3000 rpm	N	240	48	260	52	270	54		
	(lbf)	(54)	(11)	(58)	(12)	(61)	(12)		
4000 rpm	N	220	44	230	46	240	48		
	(lbf)	(49)	(10)	(52)	(10)	(54)	(11)		
5000 rpm	N	200	40	220	44	230	46		
	(lbf)	(45)	(9)	(49)	(10)	(52)	(10)		
6000 rpm	N	190	38	200	40	210	42		
	(lbf)	(43)	(9)	(45)	(9)	(47)	(9)		
7000 rpm	N	180	36	190	38	200	40		
	(lbf)	(40)	(8)	(43)	(9)	(45)	(9)		
8000 rpm	N	170	34	190	38	190	38		
	(lbf)	(38)	(8)	(43)	(9)	(43)	(9)		

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3070:

Speed of	Unit	Value					
rotation		SH30701		SH30702	SH30702		
		F _R	FA	F _R	F _A	F _R	F _A
1000 rpm	N	660	132	710	142	730	146
	(lbf)	(148)	(30)	(160)	(32)	(164)	(33)
2000 rpm	N	520	104	560	112	580	116
	(lbf)	(117)	(23)	(126)	(25)	(130)	(26)
3000 rpm	N	460	92	490	98	510	102
	(lbf)	(103)	(21)	(110)	(22)	(115)	(23)
4000 rpm	N	410	82	450	90	460	92
	(lbf)	(92)	(18)	(101)	(20)	(103)	(21)
5000 rpm	N	380	76	410	82	430	86
	(lbf)	(85)	(17)	(92)	(18)	(97)	(19)
6000 rpm	N	360	72	390	78	400	80
	(lbf)	(81)	(16)	(88)	(18)	(90)	(18)

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3100:

Speed of	Unit	Value								
rotation		SH3100	SH31001		SH31002		SH31003		SH31004	
		F _R	FA							
1000 rpm	N	900	180	990	198	1050	210	1070	214	
	(lbf)	(202)	(40)	(223)	(45)	(236)	(47)	(241)	(48)	
2000 rpm	N	720	144	790	158	830	166	850	170	
	(lbf)	(162)	(32)	(178)	(36)	(187)	(37)	(191)	(38)	
3000 rpm	N	630	126	690	138	730	146	740	148	
	(lbf)	(142)	(28)	(155)	(31)	(164)	(33)	(166)	(33)	
4000 rpm	N	570	114	620	124	660	132	-	-	
	(lbf)	(128)	(26)	(139)	(28)	(148)	(30)			
5000 rpm	N	530	106	-	-	-	-	-	-	
	(lbf)	(119)	(24)							

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3140:

Speed of	Unit	Value	Value									
rotation		SH3140	SH31401		SH31402		SH31403		SH31404			
		FR	FA	F _R	FA	F _R	FA	F _R	FA			
1000 rpm	N	1930	386	2240	448	2420	484	2660	532			
	(lbf)	(434)	(87)	(504)	(101)	(544)	(109)	(598)	(120)			
2000 rpm	N	1530	306	1780	356	1920	384	2110	422			
	(lbf)	(344)	(69)	(400)	(80)	(432)	(86)	(474)	(95)			
3000 rpm	N	1340	268	1550	310	1670	334	1840	368			
	(lbf)	(301)	(60)	(348)	(70)	(375)	(75)	(414)	(83)			

The following tables show the maximum radial shaft load F_{R} and the maximum axial shaft load F_{A} for SH3205:

Speed of	Unit	Value							
rotation		SH32051		SH32052	SH32052				
		F _R	F _A	F _R	F _A	F _R	FA		
1000 rpm	N	3730	746	4200	840	4500	900		
	(lbf)	(839)	(168)	(944)	(189)	(1012)	(202)		
2000 rpm	N	2960	592	3330	666	3570	714		
	(lbf)	(665)	(133)	(749)	(150)	(803)	(161)		
3000 rpm	N	2580	516	2910	582	3120	624		
	(lbf)	(580)	(116)	(654)	(131)	(701)	(140)		

Performance Data

SH3040

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Continuous stall torque M ₀ ⁽²⁾	Nm	0.21	0.39	
Peak torque M _{max}	Nm	0.75	1.50	
Number of pole pairs		5	5	

⁽¹⁾ Conditions for performance data: Mounted to aluminum plate 185 mm (7.28 in) x 185 mm (7.28 in) x 8 mm (0.31 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Nominal speed of rotation n _N	rpm	2000	2000	
Nominal torque M _N	Nm	0.20	0.38	
Nominal current I _N	A _{rms}	1.03	1.45	
Nominal power P _N	kW	0.042	0.078	

General data with supply voltage U_n = 230 Vac:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Nominal speed of rotation n _N	rpm	4000	4000	
Nominal torque M _N	Nm	0.19	0.37	
Nominal current I _N	A _{rms}	1.01	1.42	
Nominal power P _N	kW	0.080	0.152	

General data with supply voltage U_n = 400 Vac and 480 Vac:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Nominal speed of rotation without shaft sealing ring n_N	rpm	9000	9000	
Nominal speed of rotation with shaft sealing ring n_N	rpm	6000	6000	
Nominal torque M _N	Nm	0.18	0.31	
Nominal current I _N	A _{rms}	1.02	1.27	
Nominal power P _N	kW	0.170	0.292	

 $⁽²⁾ M_0 = \text{Continuous stall torque at 20 rpm and } 100\% \text{ duty cycle};$ at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.

Electrical data:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Maximum winding voltage U _{max}	Vac	480	480	
Maximum winding voltage U _{max}	Vdc	680	680	
Maximum voltage to ground	Vac	280	280	
Maximum current I _{max}	A _{rms}	4.5	7.2	
Continuous stall current I ₀	A _{rms}	1.12	1.50	
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	13.6	18.0	
Torque constant k _t	Nm/A	0.190	0.260	
Winding resistance R ₂₀ u-v	Ω	17.2	11.6	
Winding inductance L _q u-v	mH	14.6	12.8	
Winding inductance L _d u-v	mH	13.2	11.6	
(1) RMS value at 1000 rpm and 20°C (68 °F).	1	,	1	

Mechanical data:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Maximum permissible speed of rotation without shaft sealing ring n _{max}	rpm	10000	10000	
Maximum permissible speed of rotation with shaft sealing ring n _{max}	rpm	6000	6000	
Rotor inertia without holding brake J _M	kgcm ²	0.0232	0.0419	
Rotor inertia with holding brake J _M	kgcm ²	0.0400	0.0588	
Mass without holding brake m	kg	0.46	0.60	
Mass with holding brake m	kg	0.61	0.75	

Thermal data:

Characteristic	Unit	Value		
		SH30401P	SH30402P	
Thermal time constant tth	min	8	10	

SH3055

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value					
		SH30551P	SH30552P	SH30553P			
Continuous stall torque M ₀ ⁽²⁾	Nm	0.42	0.71	1.05			
Peak torque M _{max}	Nm	1.5	2.5	3.5			
Number of pole pairs		3	3	3			

⁽¹⁾ Conditions for performance data: Mounted to aluminum plate 250 mm (9.84 in) x 250 mm (9.84 in) x 12 mm (0.47 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value					
		SH30551P	SH30552P	SH30553P			
Nominal speed of rotation n _N	rpm	2000	2000	2000			
Nominal torque M _N	Nm	0.40	0.69	0.98			
Nominal current I _N	A _{rms}	0.70	1.18	1.60			
Nominal power P _N	kW	0.08	0.15	0.21			

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value	Value					
		SH30551P	SH30552P	SH30553P				
Nominal speed of rotation without shaft sealing ring n _N	rpm	4000	4000	4000				
Nominal speed of rotation with shaft sealing ring n _N	rpm	4000	4000	4000				
Nominal torque M _N	Nm	0.39	0.67	0.93				
Nominal current I _N	A _{rms}	0.68	1.15	1.52				
Nominal power P _N	kW	0.16	0.28	0.39				

General data with supply voltage U_n = 400 Vac and 480 Vac:

Characteristic	Unit	Value					
		SH30551P	SH30552P	SH30553P			
Nominal speed of rotation without shaft sealing ring n _N	rpm	8000	8000	8000			
Nominal speed of rotation with shaft sealing ring n _N	rpm	6000	6000	6000			
Nominal torque M _N	Nm	0.35	0.63	0.81			
Nominal current I _N	A _{rms}	0.62	1.10	1.35			
Nominal power P _N	kW	0.29	0.53	0.68			

⁽²⁾ M₀ = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.

Electrical data:

Unit	Value		
	SH30551P	SH30552P	SH30553P
Vac	480	480	480
Vdc	680	680	680
Vac	280	280	280
A _{rms}	2.90	4.80	6.50
A _{rms}	0.73	1.20	1.70
V _{rms}	40.00	40.00	41.00
Nm/A	0.58	0.59	0.62
Ω	41.80	17.40	10.40
mH	74.3	36.40	26.00
mH	68.84	34.28	23.96
	Vac Vdc Vac Arms Arms Vrms Nm/A Ω mH	SH30551P Vac 480 Vdc 680 Vac 280 Arms 2.90 Arms 0.73 Vrms 40.00 Nm/A 0.58 Ω 41.80 mH 74.3	SH30551P SH30551P SH30552P Vac 480 480 Vdc 680 680 Vac 280 280 Arms 2.90 4.80 Arms 0.73 1.20 Vrms 40.00 40.00 Nm/A 0.58 0.59 Ω 41.80 17.40 mH 74.3 36.40

Mechanical data:

Characteristic	Unit	Value				
		SH30551P	SH30552P	SH30553P		
Maximum permissible speed of rotation without shaft sealing ring n _{max}	rpm	9000	9000	9000		
Maximum permissible speed of rotation with shaft sealing ring n _{max}	rpm	6000	6000	6000		
Rotor inertia without holding brake J _M	kgcm ²	0.059	0.096	0.134		
Rotor inertia with holding brake J _M	kgcm ²	0.080	0.117	0.155		
Mass without holding brake m	kg	1.20	1.50	1.80		
Mass with holding brake m	kg	1.35	1.65	1.95		

Thermal data:

Characteristic	Unit	Value				
		SH30551P	SH30552P	SH30553P		
Thermal time constant t _{th}	min	21	26	33		
Response threshold temperature sensor	°C	130	130	130		
(PTC) T _{TK}	(°F)	(266)	(266)	(266)		

SH3070

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value					
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Continuous stall torque M ₀ ⁽²⁾	Nm	1.25	2.04	2.04	2.94	2.94	
Peak torque M _{max}	Nm	3.5	7.6	7.6	11.3	11.3	
Number of pole pairs		3	3	3	3	3	

⁽¹⁾ Conditions for performance data: Mounted to aluminum plate 250 mm (9.84 in) x 250 mm (9.84 in) x 12 mm (0.47 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value					
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Nominal speed of rotation n _N	rpm	1500	750	1500	750	1500	
Nominal torque M _N	Nm	1.22	2.04	2.03	2.92	2.79	
Nominal current I _N	A _{rms}	1.76	1.47	2.90	2.10	3.90	
Nominal power P _N	kW	0.19	0.16	0.32	0.23	0.44	

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value	Value				
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P	
Nominal speed of rotation n _N	rpm	3000	1500	3000	1500	3000	
Nominal torque M _N	Nm	1.19	2.03	1.95	2.78	2.63	
Nominal current I _N	A _{rms}	1.72	1.47	2.80	2.00	3.70	
Nominal power P _N	kW	0.37	0.32	0.61	0.44	0.83	

General data with supply voltage $U_n = 400 \text{ Vac}$ and 480 Vac:

Characteristic	Unit	Value							
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P			
Nominal speed of rotation n _N	rpm	6000	3000	6000	3000	6000			
Nominal torque M _N	Nm	1.10	2.03	1.80	2.63	2.12			
Nominal current I _N	A _{rms}	1.60	1.47	2.60	1.90	3.00			
Nominal power P _N	kW	0.69	0.64	1.13	0.83	1.33			

⁽²⁾ M₀ = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.

Electrical data:

Characteristic	Unit	Value				
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P
Maximum winding voltage U _{max}	Vac	480	480	480	480	480
Maximum winding voltage U _{max}	Vdc	680	680	680	680	680
Maximum voltage to ground	Vac	280	280	280	280	280
Maximum current I _{max}	A _{rms}	5.70	6.00	11.80	8.70	17.00
Continuous stall current I ₀	A _{rms}	1.80	1.50	2.90	2.10	4.10
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	46.00	95.90	48.00	95.00	49.00
Torque constant k _t	Nm/A	0.69	1.36	0.70	1.40	0.72
Winding resistance R ₂₀ u-v	Ω	10.40	16.40	4.20	10.70	2.70
Winding inductance L _q u-v	mH	42.60	83.10	21.30	55.30	14.60
Winding inductance L _d u-v	mH	35.30	65.20	16.70	43.10	11.40
(1) RMS value at 1000 rpm and 20 °C (68 °F).		-	•	•	1

Mechanical data with hardware version ≥RS02:

Characteristic	Unit	Value	Value						
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P			
Maximum permissible speed of rotation without shaft sealing ring n _{max}	rpm	8000	8000	8000	8000	8000			
Maximum permissible speed of rotation with shaft sealing ring n _{max}	rpm	6000	6000 6000 6000		6000	6000			
Rotor inertia without holding brake J _M	kgcm ²	0.250	0.410	0.410	0.580	0.580			
Rotor inertia with holding brake J _M	kgcm ²	0.322	0.482	0.482	0.807	0.807			
Mass without holding brake m	kg	2.10	2.80	2.80	3.60	3.60			
Mass with holding brake m	kg	2.50	3.20	3.20	4.00	4.00			

Mechanical data with hardware version <RS02:

Characteristic	Unit	Value				
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P
Maximum permissible speed of rotation without shaft sealing ring n _{max}	rpm	8000	8000	8000	8000	8000
Maximum permissible speed of rotation with shaft sealing ring n _{max}	rpm	6000	6000	6000	6000	6000
Rotor inertia without holding brake J _M	kgcm ²	0.205	0.351	0.351	0.503	0.503
Rotor inertia with holding brake J _M	kgcm ²	0.322	0.482	0.482	0.807	0.807
Mass without holding brake m	kg	2.20	2.80	2.80	3.60	3.60
Mass with holding brake m	kg	2.40	3.00	3.00	3.80	3.80

Thermal data:

Characteristic	Unit	Value							
		SH30701P	SH30702M	SH30702P	SH30703M	SH30703P			
Thermal time constant t _{th}	min	35	38	38	51	51			
Response threshold temperature sensor	°C	130	130	130	130	130			
(PTC) T _{TK}	(°F)	(266)	(266)	(266)	(266)	(266)			

SH31001 and SH31002

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value					
		SH31001M	SH31001P	SH31002M	SH31002P		
Continuous stall torque M ₀ ⁽²⁾	Nm	2.94	2.94	5.80	5.80		
Peak torque M _{max}	Nm	9.6	9.6	18.3	18.3		
Number of pole pairs		4	4	4	4		

⁽¹⁾ Conditions for performance data: Mounted to steel plate 300 mm (11.81 in) x 300 mm (11.81 in) x 20 mm (0.79 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value					
		SH31001M	SH31001P	SH31002M	SH31002P		
Nominal speed of rotation n _N	rpm	625	1250	500	1000		
Nominal torque M _N	Nm	2.80	2.91	5.62	5.50		
Nominal current I _N	A _{rms}	1.75	3.50	2.45	4.55		
Nominal power P _N	kW	0.18	0.38	0.29	0.58		

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value					
		SH31001M	SH31001P	SH31002M	SH31002P		
Nominal speed of rotation n _N	rpm	1250	2500	1000	2000		
Nominal torque M _N	Nm	2.71	2.64	5.50	5.20		
Nominal current I _N	A _{rms}	1.70	3.20	2.40	4.30		
Nominal power P _N	kW	0.35	0.69	0.58	1.09		

General data with supply voltage $U_n = 400 \text{ Vac}$ and 480 Vac:

Characteristic	Unit	Value					
		SH31001M	SH31001P	SH31002M	SH31002P		
Nominal speed of rotation n _N	rpm	2500	5000	2000	4000		
Nominal torque M _N	Nm	2.52	2.27	5.28	4.60		
Nominal current I _N	A _{rms}	1.60	2.80	2.30	3.80		
Nominal power P _N	kW	0.66	1.19	1.10	1.93		

 $⁽²⁾ M_0 = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.$

Electrical data:

Characteristic	Unit	Value			
		SH31001M	SH31001P	SH31002M	SH31002P
Maximum winding voltage U _{max}	Vac	480	480	480	480
Maximum winding voltage U _{max}	Vdc	680	680	680	680
Maximum voltage to ground	Vac	280	280	280	280
Maximum current I _{max}	A _{rms}	6.30	12.00	9.00	17.10
Continuous stall current I ₀	A _{rms}	1.80	3.50	2.50	4.80
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	115.00	60.00	146.00	77.00
Torque constant k _t	Nm/A	1.63	0.84	2.32	1.21
Winding resistance R ₂₀ u-v	Ω	13.90	3.80	8.60	2.40
Winding inductance L _q u-v	mH	69.40	19.00	48.60	13.50
Winding inductance L _d u-v	mH	59.50	16.30	43.20	12.00
(1) RMS value at 1000 rpm and 20 °C (68 °F).	•	•			

Mechanical data:

Characteristic	Unit	Value				
		SH31001M	SH31001P	SH31002M	SH31002P	
Maximum permissible speed of rotation n _{max}	rpm	6000	6000	6000	6000	
Rotor inertia without holding brake J _M	kgcm ²	1.400	1.400	2.310	2.310	
Rotor inertia with holding brake J _M	kgcm ²	2.018	2.018	2.928	2.928	
Mass without holding brake m	kg	4.30	4.30	5.90	5.90	
Mass with holding brake m	kg	5.00	5.00	6.60	6.60	

Thermal data:

Characteristic	Unit	Value					
		SH31001M	SH31001P	SH31002M	SH31002P		
Thermal time constant t _{th}	min	44	44	48	48		
Response threshold temperature sensor (PTC) T_{TK}	°C	130	130	130	130		
	(°F)	(266)	(266)	(266)	(266)		

SH31003 and SH31004

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value			
		SH31003M	SH31003P	SH31004P	
Continuous stall torque M ₀ ⁽²⁾	Nm	8	8	10	
Peak torque M _{max}	Nm	28.3	28.3	40.5	
Number of pole pairs		4	4	4	

⁽¹⁾ Conditions for performance data: Mounted to steel plate 300 mm (11.81 in) x 300 mm (11.81 in) x 20 mm (0.79 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value			
		SH31003M	SH31003P	SH31004P	
Nominal speed of rotation n _N	rpm	500	1000	750	
Nominal torque M _N	Nm	7.80	7.50	9.90	
Nominal current I _N	A _{rms}	3.34	6.30	6.25	
Nominal power P _N	kW	0.41	0.79	0.78	

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value				
		SH31003M	SH31003P	SH31004P		
Nominal speed of rotation n _N	rpm	1000	2000	1500		
Nominal torque M _N	Nm	7.50	7.00	9.50		
Nominal current I _N	A _{rms}	3.27	5.90	6.10		
Nominal power P _N	kW	0.79	1.47	1.49		

General data with supply voltage $U_n = 400 \text{ Vac}$ and 480 Vac:

Characteristic		Value			
		SH31003M	SH31003P	SH31004P	
Nominal speed of rotation n _N	rpm	2000	4000	3000	
Nominal torque M _N	Nm	7.00	5.70	7.90	
Nominal current I _N	A _{rms}	3.10	4.90	5.30	
Nominal power P _N	kW	1.47	2.39	2.48	

⁽²⁾ M₀ = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.

Electrical data:

Characteristic	Unit	Value		
		SH31003M	SH31003P	SH31004P
Maximum winding voltage U _{max}	Vac	480	480	480
Maximum winding voltage U _{max}	Vdc	680	680	680
Maximum voltage to ground	Vac	280	280	280
Maximum current I _{max}	A _{rms}	14.70	28.30	32.30
Continuous stall current I ₀	Arms	3.40	6.60	6.20
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	148.00	77.00	103.00
Torque constant k _t	Nm/A	2.35	1.22	1.62
Winding resistance R ₂₀ u-v	Ω	5.30	1.43	1.81
Winding inductance L _q u-v	mH	34.80	9.40	13.00
Winding inductance L _d u-v	mH	30.00	8.10	10.70
(1) RMS value at 1000 rpm and 20 °C (68 °F).	I		•	-

Mechanical data:

Characteristic	Unit	Value			
		SH31003M	SH31003P	SH31004P	
Maximum permissible speed of rotation n _{max}	rpm	6000	6000	6000	
Rotor inertia without holding brake J _M	kgcm ²	3.220	3.220	4.220	
Rotor inertia with holding brake J _M	kgcm ²	3.838	3.838	5.245	
Mass without holding brake m	kg	7.50	7.50	9.10	
Mass with holding brake m	kg	8.20	8.20	9.80	

Thermal data:

Characteristic	Unit	Value			
		SH31003M	SH31003P	SH31004P	
Thermal time constant t _{th}	min	56	56	58	
Response threshold temperature sensor (PTC) T _{TK}	°C	130	130	130	
	(°F)	(266)	(266)	(266)	

SH3140

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

NOTE: For the SH31404 servo motor reference, the electronic type plate data are no longer compatible with the previous versions. Test the software application data compatibility before changing a previous servo motor version with a new servo motor.

AWARNING

UNINTENDED MACHINE OPERATION

Throughly test your application after substituting the servo motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

General data(1):

Characteristic	Unit	Value					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Continuous stall torque M ₀ ⁽²⁾	Nm	11.1	11.1	19.5	27.8	33.4	
Peak torque M _{max}	Nm	27	27	60.1	90.2	131.9	
Number of pole pairs		5	5	5	5	5	

⁽¹⁾ Conditions for performance data: Mounted to steel plate 400 mm (15.75 in) x 400 mm (15.75 in) x 20 mm (0.79 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Nominal speed of rotation n _N	rpm	375	750	750	750	750	
Nominal torque M _N	Nm	11.00	10.95	18.60	24.70	30.20	
Nominal current I _N	A _{rms}	4.00	7.80	12.80	15.90	19.60	
Nominal power P _N	kW	0.43	0.86	1.46	1.94	2.37	

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P
Nominal speed of rotation n _N	rpm	750	1500	1500	1500	1500
Nominal torque M _N	Nm	10.95	10.60	17.10	21.20	26.30
Nominal current I _N	A _{rms}	4.00	7.60	12.00	13.90	17.40
Nominal power P _N	kW	0.86	1.67	2.69	3.33	4.13

⁽²⁾ M₀ = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.

General data with supply voltage U_n = 400 Vac and 480 Vac:

Characteristic	Unit	Value					
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Nominal speed of rotation n _N	rpm	1500	3000	3000	3000	3000	
Nominal torque M _N	Nm	10.60	9.20	12.30	12.90	12.86	
Nominal current I _N	A _{rms}	4.00	6.80	8.90	8.70	9.20	
Nominal power P _N	kW	1.67	2.89	3.86	4.05	4.04	

Electrical data:

Characteristic	Unit	Value	Value				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P	
Maximum winding voltage U _{max}	Vac	480	480	480	480	480	
Maximum winding voltage U _{max}	Vdc	680	680	680	680	680	
Maximum voltage to ground	Vac	280	280	280	280	280	
Maximum current I _{max}	A _{rms}	10.80	20.80	44.10	61.00	95.60	
Continuous stall current I ₀	A _{rms}	4.00	7.80	13.20	17.60	21.30	
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	193.00	100.00	101.00	105.00	104.00	
Torque constant k _t	Nm/A	2.78	1.43	1.47	1.58	1.57	
Winding resistance R ₂₀ u-v	Ω	5.30	1.41	0.60	0.40	0.28	
Winding inductance L _q u-v	mH	60.90	16.30	7.70	5.30	4.10	
Winding inductance L _d u-v	mH	55.30	14.84	7.05	4.84	3.69	
(1) RMS value at 1000 rpm and 20 °C (68 °F).							

Mechanical data:

Characteristic	Unit	Value				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P
Maximum permissible speed of rotation n _{max}	rpm	4000	4000	4000	4000	4000
Rotor inertia without holding brake J _M	kgcm ²	7.410	7.410	12.680	17.940	23.700
Rotor inertia with holding brake J _M	kgcm ²	9.210	9.210	14.480	23.440	29.200
Mass without holding brake m	kg	11.20	11.20	16.10	21.30	26.30
Mass with holding brake m	kg	12.60	12.60	17.40	23.20	28.40

Thermal data:

Characteristic	Unit	Value				
		SH31401M	SH31401P	SH31402P	SH31403P	SH31404P
Thermal time constant t _{th}	min	64	64	74	79	83
Response threshold temperature sensor (PTC) T _{TK}	°C	130	130	130	130	130
	(°F)	(266)	(266)	(266)	(266)	(266)

SH3205

The SH3 motors have an electronic type plate that allow the parameters of the motor to be read directly by a software system. In the interest of constant quality improvement, some values in the performance data tables below have been updated, and some of the values in the following tables may be different from those read from the electronic type plate data in order to maintain compatibility of your existing applications.

NOTE: The following performance-related data was measured under laboratory conditions. Your results may vary depending on the mounting, environmental and working conditions of your machine or process.

General data(1):

Characteristic	Unit	Value		
		SH32051P	SH32052P	SH32053P
Continuous stall torque M ₀ ⁽²⁾	Nm	36.90	64.90	94.40
Peak torque M _{max}	Nm	110	220	330
Number of pole pairs		5	5	5

⁽¹⁾ Conditions for performance data: Mounted to steel plate 500 mm (19.69 in) x 500 mm (19.69 in) x 30 mm (1.18 in).

General data with supply voltage $U_n = 115 \text{ Vac}$:

Characteristic	Unit	Value		
		SH32051P	SH32052P	SH32053P
Nominal speed of rotation n _N	rpm	750	500	500
Nominal torque M _N	Nm	31.90	61.60	84.90
Nominal current I _N	A _{rms}	18.80	25.40	30.80
Nominal power P _N	kW	2.51	3.23	4.45

General data with supply voltage $U_n = 230 \text{ Vac}$:

Characteristic	Unit	Value		
		SH32051P	SH32052P	SH32053P
Nominal speed of rotation n _N	rpm	1500	1000	1000
Nominal torque M _N	Nm	27.00	56.00	74.40
Nominal current I _N	A _{rms}	16.50	24.00	27.90
Nominal power P _N	kW	4.24	5.86	7.79

General data with supply voltage $U_n = 400 \text{ Vac}$ and 480 Vac:

Characteristic	Unit	Value		
		SH32051P	SH32052P	SH32053P
Nominal speed of rotation n _N	rpm	3000	2000	2000
Nominal torque M _N	Nm	17.50	38.10	50.70
Nominal current I _N	A _{rms}	11.50	17.80	20.40
Nominal power P _N	kW	5.50	7.98	10.62

 $⁽²⁾ M_0 = Continuous stall torque at 20 rpm and 100% duty cycle; at speeds of rotation less than 20 rpm the continuous stall torque is reduced to 87%.$

Electrical data:

Characteristic	Unit	Value			
		SH32051P	SH32052P	SH32053P	
Maximum winding voltage U _{max}	Vac	480	480	480	
Maximum winding voltage U _{max}	Vdc	680	680	680	
Maximum voltage to ground	Vac	280	280	280	
Maximum current I _{max}	A _{rms}	87.20	96.80	136.10	
Continuous stall current I ₀	A _{rms}	21.00	25.70	33.20	
Voltage constant k _E u-v ⁽¹⁾	V _{rms}	110.00	161.00	172.00	
Torque constant k _t	Nm/A	1.60	2.58	2.76	
Winding resistance R ₂₀ u-v	Ω	0.30	0.30	0.20	
Winding inductance L _q u-v	mH	5.90	5.60	4.30	
Winding inductance L _d u-v	mH	5.60	5.20	4.00	
(1) RMS value at 1000 rpm and 20 °C (68 °F).					

Mechanical data:

Characteristic	Unit	Value		
		SH32051P	SH32052P	SH32053P
Maximum permissible speed of rotation n _{max}	rpm	3800	3800	3800
Rotor inertia without holding brake J _M	kgcm ²	71.400	129.000	190.000
Rotor inertia with holding brake J _M	kgcm ²	87.400	145.000	206.000
Mass without holding brake m	kg	35.00	50.00	67.00
Mass with holding brake m	kg	38.60	53.60	70.60

Thermal data:

Characteristic	Unit	Value		
		SH32051P SH32052P SH32053P		
Thermal time constant n _{max}	min	73	88	101
Response threshold temperature sensor (PTC) J _M	°C	130	130	130
	(°F)	(266)	(266)	(266)

Encoder for Motors with One-Cable Connection

Description

The motors are equipped with a HIPERFACE DSL encoder. The drive can access the electronic nameplate via the HIPERFACE interface for commissioning.

The circuits meet PELV requirements.

EKS36 Singleturn

This motor encoder measures an absolute value within one revolution at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution per revolution	18 bit
Measuring range absolute	1 revolution
Signal shape	Digital
Temperature sensor	Integrated
Supply voltage	7 12 Vdc
Maximum angular acceleration	200000 rad/s ²

EKM36 Multiturn

This motor encoder measures an absolute value within 4096 revolutions at startup and continues to count incrementally from this point.

Characteristic	Value
Resolution per revolution	18 bit
Measuring range absolute	4096 revolutions
Signal shape	Digital
Temperature sensor	Integrated
Supply voltage	7 12 Vdc
Maximum angular acceleration	200000 rad/s²

EES37 Singleturn

This motor encoder measures an absolute value within one revolution at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution per revolution	15 bit
Measuring range absolute	1 revolution
Signal shape	Digital
Temperature sensor	Integrated
Supply voltage	7 12 Vdc
Maximum angular acceleration	200000 rad/s²

EEM37 Multiturn

This motor encoder measures an absolute value within 4096 revolutions at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution per revolution	15 bit
Measuring range absolute	4096 revolutions
Signal shape	Digital
Temperature sensor	Integrated
Supply voltage	7 12 Vdc
Maximum angular acceleration	200000 rad/s²

Encoder for Motors with Two-Cable Connection

Description

The motors are equipped with a HIPERFACE SinCos encoder. The drive can access the electronic nameplate via the HIPERFACE interface for commissioning.

The circuits meet PELV requirements.

SKS36 Singleturn

This motor encoder measures an absolute value within one revolution at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution in increments	Depending on evaluation
Resolution per revolution	128 sin/cos periods
Measuring range absolute	1 revolution
Accuracy of the digital absolute value ⁽¹⁾	±0.0889°
Accuracy of the incremental position	±0.0222°
Signal shape	Sinusoidal
Supply voltage	7 12 Vdc
Maximum supply current	60 mA (without load)
Maximum angular acceleration	200000 rad/s ²

⁽¹⁾ Depending on the evaluation through the drive, the accuracy may be increased by including the incremental position in the calculation of the absolute value. In this case, the accuracy corresponds to the incremental position.

SKM36 Multiturn

This motor encoder measures an absolute value within 4096 revolutions at startup and continues to count incrementally from this point.

Depending on evaluation
128 sin/cos periods
4096 revolutions
±0.0889°
±0.0222°
Sinusoidal
7 12 Vdc
60 mA (without load)
200000 rad/s ²

(1) Depending on the evaluation through the drive, the accuracy may be increased by including the incremental position in the calculation of the absolute value. In this case, the accuracy corresponds to the incremental position.

SEK37 Singleturn

This motor encoder measures an absolute value within one revolution at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution in increments	Depending on evaluation
Resolution per revolution	16 sin/cos periods
Measuring range absolute	1 revolution
Accuracy of position	± 0.08°
Signal shape	Sinusoidal
Supply voltage	7 12 Vdc
Maximum supply current	50 mA (without load)

SEL37 Multiturn

This motor encoder measures an absolute value within 4096 revolutions at start-up and continues to count incrementally from this point.

Characteristic	Value
Resolution in increments	Depending on evaluation
Resolution per revolution	16 sin/cos periods
Measuring range absolute	4096 revolutions
Accuracy of position	± 0.08°
Signal shape	Sinusoidal
Supply voltage	7 12 Vdc
Maximum supply current	50 mA (without load)

Holding Brake

Characteristics

Characteristic	Unit	Value for SH3									
		040	055	070(1)	0701, 0702 ⁽²⁾	0703(2)	1001, 1002, 1003	1004	1401, 1402	1403, 1404	205
Holding torque ⁽³⁾	Nm	0.4	0.8	3	2	3	9	12	23	36	80
	(lb•in)	(3.54)	(7.08)	(26.6)	(17.7)	(26.6)	(79.7)	(106)	(204)	(319)	(708)
Opening time	ms	24	12	80	25	35	40	45	50	100	200
Coupling time	ms	13	6	17	8	15	20	20	40	45	50
Nominal voltage	Vdc	24	24	24	24	24	24	24	24	24	24
		+15%	+6%	+5%	+6%	+6%	+6%	+6%	+6%	+6%	+6%
		-15%	-10%	-15%	-10%	-10%	-10%	-10%	-10%	-10%	-10%
Nominal power (electrical pull-in power)	W	5.8	10	7	10	12	18	17	24	26	40
Maximum kinetic energy that can be transformed into heat per deceleration during braking of moving loads	J	10	120	130	130	130	150	150	550	850	21000

⁽¹⁾ With hardware version ≥RS02.
(2) With hardware version <RS02.
(3) The holding brake is broken-in at the factory. If the holding brake is not used for an extended period of time, parts of the holding brake may corrode. Corrosion reduces the holding torque.

Characteristic	Unit	Value
Maximum speed of rotation during braking of moving loads	rpm	3000
Maximum number of decelerations during braking of moving loads and 3000 rpm	-	500
Maximum number of decelerations during braking of moving loads per hour (at even distribution)	-	20

58 0198441113987.08

Certifications

Product Certifications

Certified by	Assigned number
UL	File E208613

Conditions for UL 1004-1, UL 1004-6 and CSA 22.2 No. 100 PELV Power Supply

Use only power supply units that are approved for overvoltage category III.

Wiring

Use at least 60/75 °C (140/167 °F) copper conductors.

Installation

AADANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

AADANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Keep foreign objects (such as chips, screws or wire clippings) from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

This equipment has been designed to operate outside of any hazardous location. Only install this equipment in zones known to be free of a hazardous atmosphere.

ADANGER

POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.

Failure to follow these instructions will result in death or serious injury.

Motors are very heavy relative to their size. The great mass of the motor can cause injuries and damage. The motor may move, tip and fall as a result of incorrect or insufficient mounting.

AWARNING

HEAVY AND/OR FALLING PARTS

- Use a suitable crane or other suitable lifting gear for mounting the motor if this is required by the weight of the motor.
- Use the necessary personal protective equipment (for example, protective shoes, protective glasses and protective gloves).
- Mount the motor so that it cannot come loose (use of securing screws with appropriate tightening torque), especially in cases of fast acceleration or continuous vibration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Motors can generate strong local electrical and magnetic fields. This can cause interference in electromagnetically sensitive devices.

AWARNING

ELECTROMAGNETIC FIELDS

- Keep persons with electronic medical implants, such as pacemakers, away from the motor.
- Do not place electromagnetically sensitive devices in the vicinity of the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

AWARNING

HOT SURFACES

- · Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

AWARNING

IMPROPER APPLICATION OF FORCES

- Do not use the motor as a step to climb into or onto the machine.
- Do not use the motor as a load-bearing part.
- Use hazard labels and guards on your machine to help prevent the improper application of forces on the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Electromagnetic Compatibility (EMC)

General

The measures for electromagnetic compatibility (EMC) are intended to minimize electromagnetic interference of the device and interference caused by the device that affects the environment. Such measures include measures to reduce interference and emission as well as to increase immunity.

Electromagnetic compatibility hinges to a great extent on the individual components used in the system. The EMC measures described in this document may help to comply with the requirements of IEC 61800-3. You must comply with all EMC regulations of the country in which the product is operated. Also, respect any special EMC regulations that may apply at the installation site (for example, residential environments or airports).

Signal interference can cause unexpected responses of the drive system and of other equipment in the vicinity of the drive system.

AWARNING

SIGNAL AND EQUIPMENT INTERFERENCE

- Install the wiring in accordance with the EMC requirements described in the present document.
- Verify compliance with the EMC requirements described in the present document.
- Verify compliance with all EMC regulations and requirements applicable in the country in which the product is to be operated and with all EMC regulations and requirements applicable at the installation site.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

These types of devices are not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if used in such a network.

AWARNING

RADIO INTERFERENCE

Do not use these products in domestic electrical networks.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Motor and Encoder Cables

In terms of EMC, motor cables are especially critical since they are particularly prone to causing interference.

When planning the wiring, take into account the fact that the motor cable must be routed separately. The motor cable must be separate from mains cables or signal cables (for example, limit switches). Use only pre-assembled cables or cables that comply with the specifications and implement the EMC measures described below.

EMC measures	Effect				
Keep cables as short as possible. Do not install unnecessary cable loops. Use short cables from the central grounding point in the control cabinet to the external ground connection.	Reduces capacitive and inductive interference.				
Ensure that there is a ground connection between the motor flange and the mounting surface on the machine (no paint, oil and grease or any insulating material between the motor flange and the mounting surface on the machine).	Reduces emissions, increases immunity.				
Connect large surface areas of cable shields, use cable clamps and ground straps.	Reduces emissions.				
Do not install switching elements in the cables.	Reduces interference.				
Route the motor cable separately from mains cables and signal cables (for example, for limit switches), for example by using shielding plates or by keeping the cables apart from each other at a distance of at least 20 cm (5.08 in).	Reduces mutual interference.				
Route the cables without cutting them.(1)	Reduces emission.				
(A) If a selection of factor the installation tales are required an account of a constant with the contract of					

⁽¹⁾ If a cable is cut for the installation, take appropriate measures for uninterrupted shielding (such as a metal housing) at the point of the cut. Connect a large area of the cable shield to the metal housing at both ends of the cut.

Pre-Assembled Connection Cables (Accessories)

Using pre-assembled cables helps to reduce the possibility of wiring errors. See Accessories and Spare Parts, page 89.

Cables and Signals

General Information

Conductor Cross Sections According to Method of Installation

The following sections describe the conductor cross sections for two methods of installation:

- Method of installation B2:
 Cables in conduits or cable trunking systems
- Method of installation E:
 Cables on open cable trays

Cross section in mm² (AWG)	Current-carrying capacity with method of installation B2 in A ⁽¹⁾	Current carrying capacity with method of installation E in A ⁽¹⁾
0.75 (18)	8.5	10.4
1 (16)	10.1	12.4
1.5 (14)	13.1	16.1
2.5 (12)	17.4	22
4 (10)	23	30
6 (8)	30	37
10 (6)	40	52
16 (4)	54	70
25 (2)	70	88

(1) Values as per IEC 60204-1 for continuous operation, copper conductors and ambient air temperature 40°C (104 °F); see IEC 60204-1 for additional information.

Note the derating factors for grouping of cables and correction factors for other ambient conditions (IEC 60204-1).

The conductors must have a sufficiently large cross section so that the upstream fuse can trip.

In the case of longer cables, it may be necessary to use a greater conductor cross section to reduce the energy losses.

Cable Specifications for Motors with One-Cable Connection (SH3-OMC)

Description

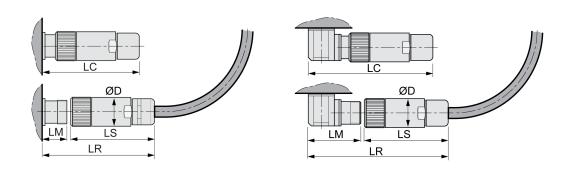
Using pre-assembled cables helps to reduce the possibility of wiring errors. See Accessories and Spare Parts, page 89.

The genuine accessories have the following properties:

Hybrid Cables

Characteristic	Value for					
	VW3ED132 VW3ED143		VW3ED144	VW3ED145		
Cable jacket, insulation	Green (similar to RAL 6018)					
Number of contacts (shielded)	(4 x 1.5 mm ² +					
	(2 x 0.75 mm ²) +		(2 x 1.0 mm ²) +			
	(2 x AWG24))		(2 x AWG24))			
Connector motor end	8-pin circular M17	8-pin circular M23		8-pin circular M40		
Connector drive end	Pre-assembled for L	XM62DU60, LXM62DD	15, LXM62DD27 and I	LXM62DD45		
Assigned motor	SH3040, SH3055 SH3070, SH3100, SH31401, SH31402			SH31403, SH31404		
Cable diameter	11.7 mm ± 0.3 mm 14.0 mm ± 0.4 mm					
	(0.46 in ± 0.1 in)		(0.55 in ± 0.2 in)			
Minimum bend radius with fixed installation	5 times the cable diameter					
Minimum bend radius with moving installation	7.5 times the cable d	iameter				
Nominal voltage motor phases	1000 V					
Nominal voltage holding brake	1000 V					
Nominal voltage encoder	30 V					
Maximum length(1)	75 m (246 ft)					
Permissible temperature range during storage and transportation	-25 80 °C (-13 176 °F)					
Permissible temperature range during operation	-20 80 °C (-4 176 °F)					
Certifications / declaration of conformity	CE					
(1) Including cable extension. Maximum two hybri	d cable extensions.					

Hybrid Cable Extensions


Characteristic	Value for	Value for					
	VW3EF132	VW3EF132 VW3EF143		VW3EF145			
Cable jacket, insulation	Green (similar to RAL	Green (similar to RAL 6018)					
Number of contacts (shielded)	(4 x 1.5 mm ² +		(4 x 2.5 mm ² +				
	(2 x 0.75 mm ²) +		(2 x 1.0 mm ²) +	(2 x 1.0 mm ²) +			
	(2 x AWG24))	(2 x AWG24)) (2 x AWG24))					
Connectors (both ends)	8-pin circular M17	8-pin circular M17 8-pin circular M23		8-pin circular M40			
Cable diameter	11.7 mm ± 0.3 mm	11.7 mm ± 0.3 mm					
	(0.46 in ± 0.1 in)		(0.55 in ± 0.2 in)				

Characteristic	Value for					
	VW3EF132	VW3EF143	VW3EF144	VW3EF145		
Minimum bend radius with fixed installation	5 times the cable	diameter				
Minimum bend radius with moving installation	7.5 times the cable diameter					
Nominal voltage motor phases	1000 V					
Nominal voltage holding brake	1000 V					
Nominal voltage encoder	30 V					
Permissible temperature range during storage and transportation	-25 80 °C (-13 176 °F)					
Permissible temperature range during operation	-20 80 °C (-4 176 °F)					
Certifications / declaration of conformity	CE					

Clearance For Connectors

Straight connectors

Angular connectors

Dimension	Unit	Value	Value				
		Straight	Angular				
		M23	M17	M17 M23			
D	mm (in)	28.0 (1.10)	22.0 (0.87)	28.0 (1.10)	46.0 (1.81)		
LS	mm (in)	78.0 (3.07)	56.0 (2.20)	78.0 (3.07)	99.0 (3.90)		
LR	mm (in)	111.8 (4.40)	105.0 (4.13)	133.3 (5.25)	190.0 (7.48)		
LC	mm (in)	80.5 (3.17)	89.2 (3.51)	102.0 (4.02)	170 (6.69)		
LM	mm (in)	33.8 (1.33)	49.0 (1.93)	55.3 (2.18)	91.0 (3.58)		

Cable Specifications for Motors with Two-Cable Connection

Description

Using pre-assembled cables helps to reduce the possibility of wiring errors. See Accessories and Spare Parts, page 89.

The genuine accessories have the following properties:

Motor Cables

Characteristic	Value							
	VW3E1166	VW3E1143	VW3E1144	VW3E1145	VW3E1153	VW3E1154		
Cable jacket, insulation	PUR green (similar to RAL 6018)							
Number of contacts (shielded)	(4 x 1 mm ² + 2 x (2 x 0.75 mm ²))	(4 x 1.5 mm ² + 2 x (2 x 0.75 mm ²))	(4 x 2.5 mm ² + 2 x (2 x 1 mm ²))	(4 x 2.5 mm ² + 2 x (2 x 1 mm ²))	(4 x 4 mm ² + (2 x 1 mm ²) + (2 x 1.5 mm ²))	(4 x 10 mm ² + (2 x 1 mm ²) + (2 x 1.5 mm ²))		
Connector motor end	8-pin circular Y-TEC	8-pin circular M23 8-pin circular			M40			
Connector drive end	Pre-Assembled	l for LXM52 and L	XM62					
Assigned motor	SH3040	SH3055, SH30 SH31401, SH3		SH31403, SH3	SH31403, SH31404, SH3205			
Cable diameter	11 mm ± 0.3 mm	12.4 mm ± 0.4 mm	14.4 mm ± 0.3 mm	14.7 mm ± 0.3 mm	18.4 mm ± 0.3 mm	22.7 mm ± 0.3 mm		
	(0.43 in ± 0.01 in)	(0.49 in ± 0.1 in)	(0.57 in ± 0.1 in)	(0.58 in ± 0.1 in)	(0.72 in ± 0.1 in)	(0.89 in ± 0.1 in)		
Minimum bend radius with fixed installation	10 times the cable diameter	5 times the cable diameter						
Minimum bend radius with moving installation	10 times the cable diameter	12 times the cable diameter						
Nominal voltage power wires	1000 V	1000 V						
Nominal voltage signal wires	1000 V	300 V						
Maximum length (including cable extension)	75 m (246 ft)							
Permissible temperature range	-40 80 °C	-40 80 °C		-50 80 °C		-50 80 °C		
during operation with fixed installation	(-40 176 °F)		(-58 176 °F)		(-40 176 ° F)	(-58 176 ° F)		
Permissible temperature range	-20 60 °C	-30 80 °C			-30 80 °C	-40 80 °C		
during operation with moving installation	(-4 140 °F)	(-22 176 ° F)	(-40 176 °F)		(-22 176 ° F)	(-40 176 ° F)		
Certifications / declaration of conformity	CE				•			

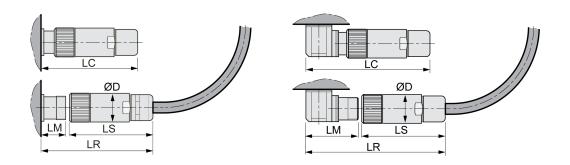
Motor Cable Extensions

Characteristic	Value		
	VW3E1167		
Cable jacket, insulation	PUR green (similar to RAL 6018)		
Number of contacts (shielded)	(4 x 1 mm ² + 2 x (2 x 0.75 mm ²))		
Connectors	8-pin circular Y-TEC, male/female		
Cable diameter	11 mm ± 0.3 mm (0.43 in ± 0.01 in)		

Characteristic	Value		
	VW3E1167		
Minimum bend radius with fixed installation	10 times the cable diameter		
Minimum bend radius with moving installation	10 times the cable diameter		
Nominal voltage power wires	1000 V		
Nominal voltage signal wires	1000 V		
Permissible temperature range during operation with fixed installation	-40 80 °C (-40 176 °F)		
Permissible temperature range during operation with moving installation	-20 60 °C (-4 140 °F)		
Certifications / declaration of conformity	CE		

Encoder Cables

Characteristic	Value			
	VW3E2098	VW3E2094		
Cable jacket, insulation	PUR matte green (similar to RAL 6018)			
Number of contacts (shielded)	(3 x 2 x 0.14 mm ² + 2 x 0.34 mm ²)			
Connector motor end	12-pin circular Y-TEC	12-pin circular M23		
Connector drive end	10-pin RJ45			
Assigned motor	SH3040	SH3055, SH3070, SH3100, SH3140, SH3205		
Cable diameter	6.8 mm ± 0.2 mm (0.27 in ± 0.1 in)			
Minimum bend radius with fixed installation	10 times the cable diameter			
Minimum bend radius with moving installation	10 times the cable diameter			
Nominal voltage	300 V			
Maximum length (including cable extension)	75 m (246 ft)			
Permissible temperature range during operation with fixed installation	-40 80 °C (-40 176 °F)			
Permissible temperature range during operation with moving installation	-20 80 °C (-4 176 °F)			


Encoder Cable Extensions

Characteristic	Value		
	VW3E2099		
Cable jacket, insulation	PUR green (similar to RAL 6018)		
Number of contacts (shielded)	(3 x 2 x 0.14 mm ² + 2 x 0.34 mm ²)		
Connectors	12-pin circular Y-TEC		
Cable diameter	6.8 mm ± 0.2 mm (0.27 in ± 0.1 in)		
Minimum bend radius with fixed installation	10 times the cable diameter		
Minimum bend radius with moving installation	10 times the cable diameter		
Nominal voltage	300 V		
Permissible temperature range during operation with fixed installation	-40 80 °C (-40 176 °F)		
Permissible temperature range during operation with moving installation	-20 80 °C (-4 176 °F)		

Clearance For Connectors

Straight connectors

Angular connectors

Dimension	Unit	Value							
		Motor connector				Encoder connector			
		Straight		Angular			Straight	Angular	
		M23	M40	Y-TEC	M23	M40	M23	Y-TEC	M23
D	mm (in)	28 (1.1)	46 (1.81)	18.7 (0.74)	28 (1.1)	46 (1.81)	26 (1.02)	18.7 (0.74)	26 (1.02)
LS	mm (in)	76 (2.99)	100 (3.94)	42 (1.65)	76 (2.99)	100 (3.94)	51 (2.01)	42 (1.65)	51 (2.01)
LR	mm (in)	117 (4.61)	155 (6.1)	100 (3.94)	132 (5.2)	191 (7.52)	76 (2.99)	100 (3.94)	105 (4.13)
LC	mm (in)	100 (3.94)	145 (5.71)	89 (3.50)	114 (4.49)	170 (6.69)	60 (2.36)	89 (3.50)	89 (3.5)
LM	mm (in)	40 (1.57)	54 (2.13)	58 (2.28)	55 (2.17)	91 (3.58)	23 (0.91)	58 (2.28)	52 (2.05)

0198441113987.08

Mechanical Installation

Before Mounting

Inspecting The Product

- Verify the product version by means of the type code on the nameplate. See Nameplate, page 12 and Type Code, page 14.
- Prior to mounting, inspect the product for visible damage.

Damaged products may cause electric shock or unintended equipment operation.

AADANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Do not use damaged products.
- Keep foreign objects (such as chips, screws or wire clippings) from getting into the product.

Failure to follow these instructions will result in death or serious injury.

Contact your local Schneider Electric service representative if you detect any damage whatsoever to the products.

Inspecting the Holding Brake (Option)

See Inspecting/Breaking In the Holding Brake, page 70.

Cleaning the Shaft

The shaft extensions are factory-treated with an anti-corrosive. If output components are glued to the shaft, the anti-corrosive must be removed and the shaft cleaned. If required, use a grease removal agent as specified by the glue manufacturer. If the glue manufacturer does not provide information on grease removal, acetone may be used.

 Remove the anti-corrosive. Avoid direct contact of the skin and the sealing parts with the anti-corrosive or the cleaning agent.

Mounting Surface for Flange

The mounting surface must be stable, clean, deburred and low-vibration. Ensure that the mounting surface is itself grounded, and that a potential exists between the motor flange and the mounting surface.

A A DANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

Verify that the mounting surface meets the requirements in terms of dimensions and tolerances in this document.

Mounting The Motor

General

Electrostatic discharge to the shaft may cause incorrect operation of the encoder system and result in unanticipated motor movements and damage to the bearing.

AWARNING

UNINTENDED MOVEMENT CAUSED BY ELECTROSTATIC DISCHARGE

Use conductive components such as antistatic belts or other suitable measures to avoid static charge by motion.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the permissible environmental conditions are not respected, external substances from the environment may penetrate the product and cause unintended movement or equipment damage.

AWARNING

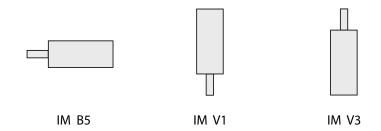
UNINTENDED MOVEMENT

- Verify that the environmental conditions are respected.
- Do not allow seals to run dry.
- · Keep liquids from getting to the shaft bushing
- Do not expose the shaft sealing rings and cable entries of the motor to the direct spray of a pressure washer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

AWARNING

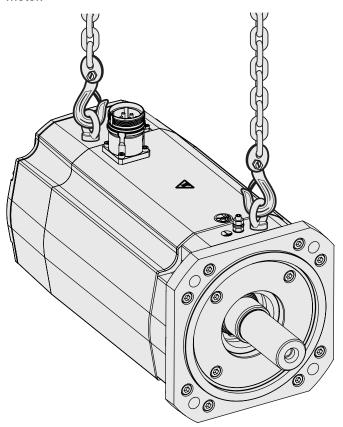

HOT SURFACES

- Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Mounting Position

The following mounting positions are defined and permissible as per IEC 60034-7:



Mounting

When the motor is mounted to the mounting surface, it must be accurately aligned axially and radially and make even contact with the mounting surface. All mounting screws must be tightened with the specified tightening torque. No uneven mechanical load must be applied when the mounting screws are tightened. See section Technical Data, page 16 for data, dimensions and degrees of protection (IP).

Eyebolts (SH3205 only)

The motors are equipped with eyebolts. Use the eyebolts to lift and mount the motor.

After the motor is mounted the eyebolts can be kept or removed. Remove the eyebolts if necessary, for example for rotating the connector.

Mounting Output Components

Output components such as pulleys and couplings must be mounted with suitable equipment and tools. Motor and output component must be accurately aligned both axially and radially. If the motor and the output component are not accurately aligned, this will cause runout and premature wear.

The maximum axial and radial forces acting on the shaft must not exceed the maximum shaft load values specified, see Shaft-specific Data, page 36.

If the maximum permissible forces at the motor shaft are exceeded, this will result in premature wear of the bearing or shaft breakage.

AWARNING

UNINTENDED EQUIPMENT OPERATION DUE TO MECHANICAL DAMAGE TO THE MOTOR

- Do not exceed the maximum permissible axial and radial forces at the motor shaft.
- · Protect the motor shaft from impact.
- Do not exceed the maximum permissible axial force when pressing components onto the motor shaft.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

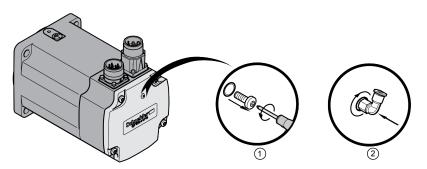
Compressed Air Connection for Motors with Two-Cable Connection

General

The compressed air generates a permanent overpressure inside the motor. This overpressure inside the motor is used to obtain degree of protection IP67.

The connection for compressed air is only suitable to reach the degree of protection IP67 in conjunction with the shaft sealing ring (IP65).

The push-in L-fitting is designed for compressed air hoses made of standard plastic with a nominal diameter of 4 mm.

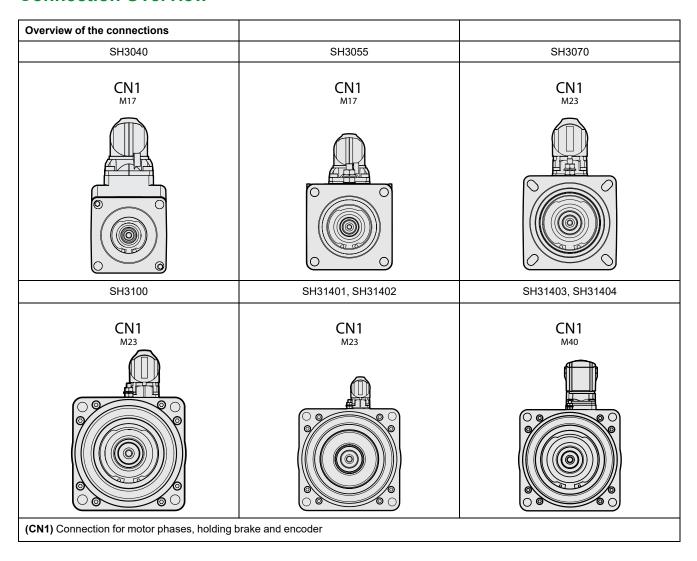

See section Compressed Air, page 16 for the characteristics of the compressed air.

Compressed Air Monitoring

Use a compressed air monitoring system.

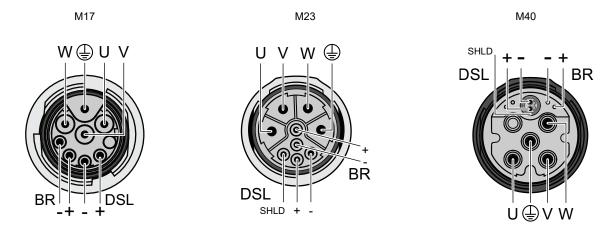
Compressed Air Connection

For installation, the existing screw plug is replaced by a push-in L-fitting. See section IP67 Kit, page 90 for sources of supply of the push-in L-fitting.


Step	Action
1	Remove the screw plug.
2	Screw the push-in L-fitting into the thread.
	Verify proper seat of the push-in L-fitting.
	Verify the tightening torque of the push-in L-fitting: 0.6 Nm (5.31 lb•in)

0198441113987.08 75

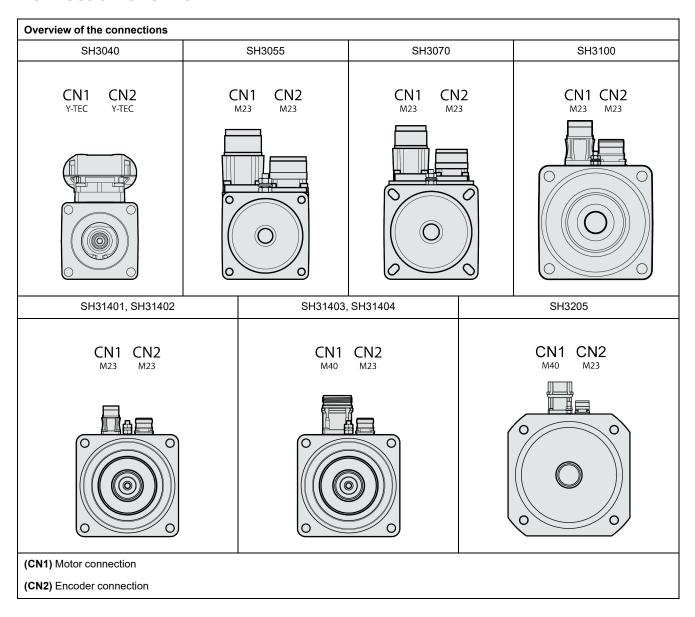
Electrical Installation


Connectors and Connector Assignments for Motors With One-Cable Connection (SH3 OMC)

Connection Overview

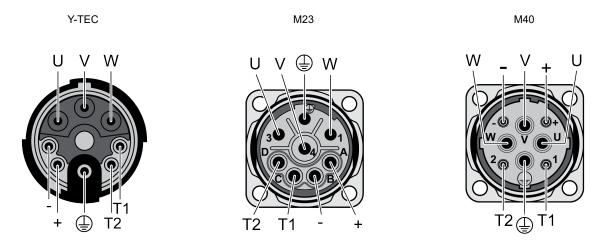
CN1 Connection

Connector for connection of the motor phases and the holding brake:



The circuits of the holding brake and the encoder meet the PELV requirements.

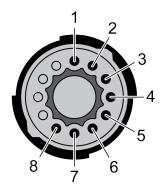
Pin	Meaning	Accessory cable
		Wire color and wire number
U	Motor phase U	BK 1
٧	Motor phase V	BK 2
W	Motor phase W	BK 3
PE	Protective ground conductor	GN/YE
BR+	Supply voltage holding brake 24 Vdc	BK 8
BR-	Reference potential holding brake 0 Vdc	BK 7
DSL+	Supply voltage encoder 10 Vdc	BU
DSL-	Reference potential encoder 0 Vdc	WH
SHLD	Shield encoder	-


Connectors and Connector Assignments for Motors With Two-Cable Connection

Connection Overview

CN1 Motor Connection

Motor connector for connection of the motor phases and the holding brake.



The circuits of the holding brake and the temperature sensor meet the PELV requirements.

Pin	Meaning	Accessory cable
		Wire color and wire number
U	Motor phase U	BK L1 or BK 1
V	Motor phase V	BK L2 or BK 2
W	Motor phase W	BK L3 or BK 3
PE	Protective ground conductor	GN/YE
+	Supply voltage holding brake 24 Vdc	WH or BK 8
-	Reference potential holding brake 0 Vdc	GY or BK 7
T1	Temperature sensor +	BK 6
T2	Temperature sensor -	BK 5
SHLD	Shield (to connector housing)	-

CN2 Encoder Connection Y-TEC

Encoder connector for connection of the SinCos encoder (singleturn and multiturn)

The circuits meet the PELV requirements.

Pin	Signal	Meaning	Pair(1)	Accessory cable
				Wire color
1	COS_OUT	Cosine signal	2	GN
2	REFCOS_OUT	Reference for cosine signal, 2.5V	2	YE
3	SIN_OUT	Sine signal	1	WH

Pin	Signal	Meaning	Pair(1)	Accessory cable
				Wire color
4	REFSIN_OUT	Reference for sine signal, 2.5 V	1	BN
5	DATA+	Receive data, transmit data	3	GY
6	DATA-	Receive data and transmit data, inverted	3	PK
7	ENC+10V	7 12 V supply voltage	4	RD
8	ENC_0V	Reference potential ⁽²⁾	4	BL
	SHLD	Shield (to connector housing)	-	-

⁽¹⁾ Signal pairs must be twisted

CN2 Encoder Connection M23

Encoder connector for connection of the SinCos encoder (singleturn and multiturn)

The circuits meet the PELV requirements.

Pin	Signal	Meaning	Accessory cable
			Wire color
1	REFCOS_OUT	Reference for cosine signal, 2.5V	YE
2	DATA+	Receive data, transmit data	GY
5	SIN_OUT	Sine signal	BN
6	REFSIN_OUT	Reference for sine signal, 2.5 V	WH
7	DATA-	Receive data and transmit data, inverted	PK
8	COS_OUT	Cosine signal	GN
10	ENC_0V	Reference potential ⁽¹⁾	BL
12	ENC+10V	7 12 V supply voltage	RD
	SHLD	Shield (to connector housing)	-
(1) Th	ne ENC 0V connection	on of the supply voltage has no connection to the e	ncoder housing.

⁽²⁾ The ENC_0V connection of the supply voltage has no connection to the encoder housing.

Power and Encoder Connection

General

Hazardous voltages may be present at the motor connection. The motor itself generates voltage when the motor shaft is rotated. AC voltage can couple voltage to unused conductors in the motor cable.

ADANGER

ELECTRIC SHOCK

- Verify that no voltage is present prior to performing any type of work on the drive system.
- Block the motor shaft to prevent rotation prior to performing any type of work on the drive system.
- · Insulate both ends of unused conductors of the motor cable.
- Only touch the motor shaft or the mounted output components if all power has been disconnected.
- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of all equipment.

Failure to follow these instructions will result in death or serious injury.

AADANGER

ELECTRIC SHOCK CAUSED BY INSUFFICIENT GROUNDING

- Verify compliance with all local and national electrical code requirements as well as all other applicable regulations with respect to grounding of the entire drive system.
- · Ground the drive system before applying voltage.
- Do not use conduits as protective ground conductors; use a protective ground conductor inside the conduit.
- The cross section of the protective ground conductor must comply with the applicable standards.
- Do not consider cable shields to be protective ground conductors.

Failure to follow these instructions will result in death or serious injury.

The motor is designed for operation via a drive. Connecting the motor directly to AC voltage will damage the motor and can cause fires and initiate an explosion.

ADANGER

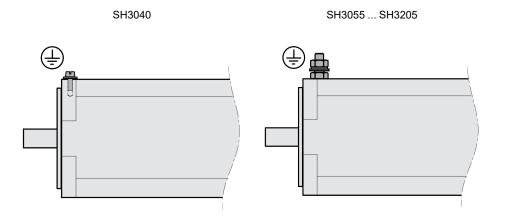
POTENTIAL FOR EXPLOSION

Only connect the motor to a matching, approved drive in the way described in the present documentation.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

AWARNING


UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

See Approved Servo Drives, page 20.

Protective Ground Conductor Connection

Ground the motor via a grounding screw if grounding via the flange and the protective ground conductor of the motor cable is not sufficient. Use parts with suitable corrosion protection. Note the required tightening torque and the property class of the grounding screw, see Tightening Torque and Property Class Of Screws Used, page 17.

Assembling Cables

Insulate unused wires individually and, if necessary, at both ends of the wire.

- Note the EMC requirements for motor cables and encoder cables, see Electromagnetic Compatibility (EMC), page 62.
- · Use equipotential bonding conductors for equipotential bonding.

Connecting the Cables

Incorrect installation of the cable may damage the insulation. Broken conductors in the cable or improperly connected connectors may promote arcing within the cable.

AADANGER

ELECTRIC SHOCK, ARC FLASH AND FIRE

- Disconnect all power before plugging in or unplugging the connectors.
- Verify correct pin assignment of the connectors according to the specifications in this section before connecting the cables.
- Verify that the connectors are properly inserted and locked before applying power.
- · Avoid forces or movements of the cable at the cable entries.

Failure to follow these instructions will result in death or serious injury.

- · Connection:
 - For motors with two-cable connection:
 - Place the female connector of the motor cable onto the motor connector and tighten the union nut. Proceed in the same manner with the connection cable of the encoder system.
 - For motors with one-cable connection (SH3-OMC):
 Place the female connector of the hybrid cable onto the motor connector and tighten the union nut.
- · Keep the cables from being twisted when tightening the union nut.
- Connect the cables to the servo drive according to the wiring diagram of the servo drive.
- Ground the shield to a large surface area. See the user guide of the servo drive for information on connecting the shield.

Holding Brake Connection

Applying the holding brake while the motor shaft is rotating under power will cause excessive wear and loss of the braking force.

AWARNING

LOSS OF BRAKING FORCE DUE TO WEAR OR HIGH TEMPERATURE

- Do not use the holding brake as a service brake.
- Do not exceed the maximum number of brake applications and the kinetic energy during braking of moving loads.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

See section Holding Brake, page 58 for technical data on braking while the load moves.

Releasing the holding brake can cause an unintended movement, for example, lowering of the load in the case of vertical axes.

AWARNING

UNINTENDED MOVEMENT

- Verify that there are no persons or obstacles in the zone of operation when performing a test of the holding brake.
- Take appropriate measures to avoid damage caused by falling or lowering loads or other unintended movements.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the voltage is incorrect, the holding brake cannot be released which causes wear. If the voltage is higher than the specified voltage, the holding brake may be re-applied. If the voltage polarity is incorrect, the holding brake cannot be released.

AWARNING

MISOPERATION OF THE HOLDING BRAKE CAUSED BY INCORRECT VOLTAGE

- Verify that the specified voltage is available at the holding brake connection.
- Use a properly rated voltage-sensing device for measuring.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A motor with a holding brake requires a suitable holding brake controller which releases the brake when the power stage is enabled and locks the motor shaft when the power stage is disabled.

Commissioning

Commissioning

AADANGER

ELECTRIC SHOCK OR UNINTENDED EQUIPMENT OPERATION

- Keep foreign objects (such as chips, screws or wire clippings) from getting into the product.
- Verify the correct seating of seals and cable entries in order to avoid contamination such as deposits and humidity.

Failure to follow these instructions will result in death or serious injury.

Drive systems may perform unanticipated movements because of incorrect connection or other errors.

AWARNING

UNINTENDED MOVEMENT

- · Verify proper wiring.
- Only start the system if there are no persons or obstructions in the zone of operation.
- · Perform the first test runs without coupled loads.
- Only touch the motor shaft or the mounted output components if all power has been disconnected.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Drive systems may perform unintended movements if unapproved combinations of drive and motor are used. Even if motors are similar, different adjustment of the encoder system may be a source of hazards. Even if the connectors for motor connection and encoder connection match mechanically, this does not imply that the motor is approved for use.

AWARNING

UNINTENDED MOVEMENT

Only use approved combinations of drive and motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

See section Approved Drives, page 20 for a list of approved drives.

Rotating parts may cause injuries and may catch clothing or hair. Loose parts or parts that are out of balance may be ejected.

AWARNING

MOVING, UNGUARDED EQUIPMENT

Verify that rotating parts cannot cause injuries or equipment damage.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The metal surfaces of the product may exceed 70 °C (158 °F) during operation.

AWARNING

HOT SURFACES

- · Avoid unprotected contact with hot surfaces.
- Do not allow flammable or heat-sensitive parts in the immediate vicinity of hot surfaces.
- Verify that the heat dissipation is sufficient by performing a test run under maximum load conditions.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Motors can generate strong local electrical and magnetic fields. This can cause interference in electromagnetically sensitive devices.

AWARNING

ELECTROMAGNETIC FIELDS

- Keep persons with electronic medical implants, such as pacemakers, away from the motor.
- Do not place electromagnetically sensitive devices in the vicinity of the motor

Failure to follow these instructions can result in death, serious injury, or equipment damage.

AWARNING

IMPROPER APPLICATION OF FORCES

- Do not use the motor as a step to climb into or onto the machine.
- Do not use the motor as a load-bearing part.
- Use hazard labels and guards on your machine to help prevent the improper application of forces on the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Prior to commissioning, verify correct installation.

Step	Action
1	Verify proper mechanical installation.
2	Verify proper electrical installation. Did you connect all protective ground conductors? Did you properly connect and install all cables and connectors? Did you tighten the cable glands properly?
3	Verify that the ambient conditions are met. • Does the installation meet the ambient conditions specified?
4	Verify the output components. • Have the installed output components been balanced and accurately aligned?
5	Verify the parallel key at the shaft end of the motor. If you have a motor with a parallel key groove and parallel key, the parallel key must not be inserted during commissioning without output component or it must be appropriately secured.
6	Verify the function of the holding brake. Is the holding brake able to hold the maximum load? Is the holding brake released prior to the start of a movement?

 $\ensuremath{\text{NOTE:}}$ Observe the information on commissioning in the user guide of the servo drive.

Diagnostics and Troubleshooting

Mechanical Issues

Issue	Cause	Troubleshooting
Excessive heat	Overload	Reduce load
	Holding brake not released	Verify that the holding brake controller operates properly
	Heavy pollution	Clean the motor
Whistling or knocking noise	Bearing	Contact your local Schneider Electric service representative
Grinding noise	Rotating output component grinds	Align output component
Radial oscillation	Poor alignment of output component	Align output component
	Output component out of balance	Balance output component
	Shaft bent	Contact your local Schneider Electric service representative
	Resonance with machine bed	Suppress resonance
Axial oscillation	Poor alignment of output component	Align output component
	Damage to the output component	Repair/replace output component
	Resonance with machine bed	Suppress resonance

Electrical Issues

Issue	Cause	Solution
Motor does not start or has	Overload	Reduce load.
difficulty starting	Unsuitable settings for the drive	Correct drive settings.
	Cable damaged	Replace damaged cables.
Excessive heat	Overload	Reduce power.
Heat at the terminals or connectors	Poor contact	Tighten the terminals / connectors with the specified tightening torque. See the appropriate user guide for the drive associated with the motor. In addition, verify the cable connection on the motor.

Accessories and Spare Parts

Cables for Motors with One-Cable Connection (SH3 OMC)

Hybrid Cables

Description	Reference
Hybrid cable, (4 x 1.5 mm² + (2 x 0.75 mm²) + (2 x AWG24)) shielded, motor end 8-pin circular connector M17, drive end pre-assembled for LXM62DU60, LXM62DD15, LXM62DD27 and LXM62DD45	VW3ED132R***
Hybrid cable, (4 x 1.5 mm² + (2 x 0.75 mm²) + (2 x AWG24)) shielded, motor end 8-pin circular connector M23, drive end pre-assembled for LXM62DU60, LXM62DD15, LXM62DD27 and LXM62DD45	VW3ED143R***
Hybrid cable, (4 x 2.5 mm² + (2 x 1.0 mm²) + (2 x AWG24)) shielded, motor end 8-pin circular connector M23, drive end pre-assembled for LXM62DU60, LXM62DD15, LXM62DD27 and LXM62DD45	VW3ED144R•••
Hybrid cable, (4 x 2.5 mm² + (2 x 1.0 mm²) + (2 x AWG24)) shielded, motor end 8-pin circular connector M40, drive end pre-assembled for LXM62DU60, LXM62DD15, LXM62DD27 and LXM62DD45	VW3ED145R•••

^{••• =} Length of the cable

Available lengths: 020 = 2 m (6.56 ft), 030 = 3 m (9.84 ft), 040 = 4 m (13.1 ft), 050 = 5 m (16.4 ft), 080 = 8 m (26.2 ft), 100 = 10 m (32.8 ft), 150 = 15 m (49.2 ft), 200 = 20 m (65.6 ft), 250 = 25 m (82 ft), 300 = 30 m (98.4 ft), 350 = 35 m (115 ft), 400 = 40 m (131 ft), 450 = 45 m (148 ft), 500 = 50 m (164 ft)

Hybrid Cable Extensions

Description	Reference
Hybrid cable extension, (4 x 1.5 mm² + (2 x 0.75 mm²) + (2 x AWG24)) shielded, 8-pin circular connectors M17 male/female	VW3EF132R•••
Hybrid cable extension, $(4 \times 1.5 \text{ mm}^2 + (2 \times 0.75 \text{ mm}^2) + (2 \times AWG24))$ shielded, 8-pin circular connectors M23 male/female	VW3EF143R•••
Hybrid cable extension, (4 x 2.5 mm² + (2 x 1.0 mm²) + (2 x AWG24)) shielded, 8-pin circular connectors M23 male/female	VW3EF144R•••
Hybrid cable extension, (4 x 2.5 mm² + (2 x 1.0 mm²) + (2 x AWG24)) shielded, 8-pin circular connectors M40 male/female	VW3EF145R•••
••• = Length of the cable	•

^{••• =} Length of the cable

Available lengths: 050 = 5 m (16.4 ft), 100 = 10 m (32.8 ft), 200 = 20 m (65.6 ft), 300 = 30 m (98.4 ft), 400 = 40 m (131 ft), 500 = 50 m (164 ft)

Cables for Motors with Two-Cable Connection

Motor Cables

Description	Reference
Motor cable, (4 x 1.0 mm² + 2 x (2 x 0.75 mm²)) shielded, motor end 8-pin circular connector Y-TEC, drive end pre-assembled for LXM52 and LXM62	VW3E1166R•••
Motor cable, (4 x 1.5 mm² + 2 x (2 x 0.75 mm²)) shielded, motor end 8-pin circular connector M23, drive end pre-assembled for LXM52 and LXM62	VW3E1143R•••
Motor cable, (4 x 2.5 mm² + 2 x (2 x 1.0 mm²)) shielded, motor end 8-pin circular connector M23, drive end pre-assembled for LXM52 and LXM62	VW3E1144R•••
Motor cable, (4 x 2.5 mm² + 2 x (2 x 1.0 mm²)) shielded, motor end 8-pin circular connector M40, drive end pre-assembled for LXM52 and LXM62	VW3E1145R•••
Motor cable, (4 x 4.0 mm² + (2 x 1.0 mm²) + (2 x 1.5 mm²)) shielded, motor end 8-pin circular connector M40, drive end pre-assembled for LXM52 and LXM62	VW3E1153R•••

Description	Reference
Motor cable, (4 x 10.0 mm² + (2 x 1.0 mm²) + (2 x 1.5 mm²)) shielded, motor end 8-pin circular connector M40, drive end pre-assembled for LXM52 and LXM62	VW3E1154R•••
••• = Length of the cable	
Available lengths: 010 = 1 m (3.28 ft) to 750 = 75 m (246 ft) in steps of 0.1 m	

Motor Cable Extensions

Description	Reference
Motor cable extension, (4 x 1.0 mm² + 2 x (2 x 0.75 mm²)) shielded, 8-pin circular connectors Y-TEC male/ female	VW3E1167R•••
••• = Length of the cable	
Available lengths: 010 = 1 m (3.28 ft) to 100 = 10 m (32.8 ft) in steps of 1.0 m	

Encoder Cables

Description	Reference
Encoder cable, (3 x 2 x 0.14 mm² + 2 x 0.34 mm²) shielded; motor end 12-pin circular connector M23, device end 10-pin connector RJ45	VW3E2094R•••
Encoder cable, (3 x 2 x 0.14 mm² + 2 x 0.34 mm²) shielded; motor end 12-pin circular connector Y-TEC, device end 10-pin connector RJ45	VW3E2098R•••
••• = Length of the cable	
Available lengths: 010 = 1 m (3.28 ft) to 750 = 75 m (246 ft) in steps of 0.1 m	

Encoder Cable Extensions

Description	Reference
Encoder cable extension, (3 x 2 x 0.14 mm² + 2 x 0.34 mm²) shielded, 12-pin circular connectors Y-TEC male/ female	VW3E2099R•••
••• = Length of the cable	
Available lengths: 010 = 1 m (3.28 ft) to 100 = 10 m (32.8 ft) in steps of 1.0 m	

IP67 Kit

Degree of protection IP65 (shaft sealing ring) is a prerequisite for the use of the IP67 kit.

Description	Reference
Push-in L-fitting, to be acquired from FESTO	QSML-B-M3-4-20

Service, Maintenance, and Disposal

Maintenance

Maintenance Plan

There are no user-serviceable parts within the motor.

Either replace the motor, or contact Schneider Electric.

The product may only be repaired by a Schneider Electric customer service center.

For all service matters, contact your Schneider Electric representative.

AWARNING

UNINTENDED EQUIPMENT OPERATION

- Only use software and hardware components approved by Schneider Electric for use with this equipment.
- Do not attempt to service this equipment outside of authorized Schneider Electric service centers.
- Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Use only the accessories and mounting parts specified in the documentation and no third-party devices or components that have not been expressly approved by Schneider Electric. Do not modify the equipment.

Include the following points in the maintenance plan of your machine.

Connections and Fastening

- Inspect all connection cables and connectors regularly for damage. Replace damaged cables immediately.
- Verify regularly that all output elements are firmly seated.
- Verify regularly that all mechanical and electrical threaded connections are tightened to the specified torque.

Lubricating the Shaft Sealing Ring

In the case of motors with shaft sealing ring, lubricant must be applied to the space between the sealing lip of the shaft sealing ring and the shaft with a suitable non-metallic tool. If the shaft sealing rings are allowed to run dry, the service life of the shaft sealing rings will be significantly reduced.

Cleaning

If the permissible environmental conditions are not respected, external substances from the environment may penetrate the product and cause unintended movement or equipment damage.

AWARNING

UNINTENDED MOVEMENT

- Verify that the environmental conditions are respected.
- Do not allow seals to run dry.
- Keep liquids from getting to the shaft bushing (for example, in mounting position IM V3).
- Do not expose the shaft sealing rings and cable entries of the motor to the direct spray of a pressure washer.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Clean dust and dirt off the product at regular intervals. Insufficient heat dissipation to the ambient air may excessively increase the temperature.

Motors are not suitable for cleaning with a pressure washer. The high pressure may force water into the motor.

Care must be taken with cleaning products as some active agents may have deleterious effects on plastics and welds. When using solvents or cleaning agents, verify that the cables, cable entry seals, O-rings and motor paint are not damaged.

NOTICE

CORROSION CAUSED BY CLEANING AGENTS

- Before using a cleaning agent, carry out a compatibility test in relation to the cleaning agent and the component affected.
- Do not use alkaline cleaning agents.
- Do not use cleaning agents containing chloride.
- Do not use cleaning agents containing sulfuric acid.

Failure to follow these instructions can result in equipment damage.

Inspecting/Breaking In the Holding Brake

The holding brake is broken-in at the factory. If the holding brake is not used for an extended period of time, parts of the holding brake may corrode. Corrosion reduces the holding torque.

If the holding brake does not have the holding torque indicated in the technical data, it must be broken in again.

- · If the motor is mounted, dismount the motor.
- Measure the holding torque of the holding brake using a torque wrench.
- If the holding torque of the holding brake considerably differs from the specified values, manually rotate the motor shaft by 25 rotations in both directions. See section Holding Brake, page 58 for the values.
- Repeat the process up to 3 times, until you can restore the original holding torque.

Contact your Schneider Electric sales office if the original holding torque is not restored.

Replacing the Motor

Description

If you replace the motor, the absolute position of the encoder is no longer valid.

AWARNING

UNINTENDED MOVEMENT DUE TO INCORRECT ABSOLUTE POSITION

Set the new absolute position of the encoder after having replaced the motor.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Step	Action
1	Power off all supply voltages. Verify that no voltages are present.
2	Label all connections and uninstall the product.
3	Note the identification number and the serial number shown on the product nameplate for later identification.
4	Install the new product as per section Installation, page 60.
5	Commission the product as per section Commissioning, page 85.

Shipping, Storage, Disposal

Shipping

The product must be protected against shocks during transportation. If possible, use the original packaging for shipping.

Storage

The product may only be stored in spaces where the specified permissible ambient conditions are met.

Protect the product from dust and dirt.

Disposal

The product consists of various materials that can be recycled. Dispose of the product in accordance with local regulations.

Visit https://www.se.com/green-premium for information and documents on environmental protection as per ISO 14025 such as:

- EoLi (Product End-of-Life Instructions)
- PEP (Product Environmental Profile)

Glossary

A

Axial forces:

Tension or compression forces acting longitudinally on the shaft

C

Centering collar:

Centering device at the motor flange that allows for accurate motor mounting.

D

Degree of protection:

The degree of protection is a standardized specification for electrical equipment that describes the protection against the ingress of foreign objects and water (for example: IP 20).

DOM:

Date of manufacturing: The nameplate of the product shows the date of manufacture in the format DD.MM.YY or in the format DD.MM.YYYY. For example:

31.12.11 corresponds to December 31, 2011

31.12.2011 corresponds to December 31, 2011

Drive system:

System consisting of controller, drive and motor.

Е

EMC:

Electromagnetic compatibility

П

Length:

In the type code, the length is defined in terms of the number of stacks.

P

PELV:

Protective Extra Low Voltage, low voltage with isolation. For more information: IEC 60364-4-41

R

Radial forces:

Forces that act radially on the shaft

S

Size:

In the type code, the size is defined in terms of the flange size.

0198441113987.08 95

Index	SEL37 Multiturn	6
A	shipping9 SKM36 Multiturn5	6
	SKS36 Singleturn5	
approved servo drives	storage9	4
C	Т	
cable specifications	type code1	4
D		
disposal94		
E		
EEM37 Multiturn55		
EES37 Singleturn54		
EKM36 Multiturn		
EKS36 Singleturn 54 EMC 62		
motor cable and encoder cable62		
encoder cable		
EMC requirements62		
encoder one-cable connection		
encoder two-capie connection56		
F		
force for pressing on36		
G		
general characteristics16		
Н		
11		
holding brake58		
holding brake connection84		
I		
installation60		
installation00		
M		
maintenance91		
motor cable		
EMC requirements62		
mounting position73		
N		
nameplate12		
παπιορίατο12		
_		
R		
replacing the motor93		
1		
6		
S		

96

SEK37 Singleturn.....57

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2025 Schneider Electric. All rights reserved.